ﻻ يوجد ملخص باللغة العربية
We model a Kohn-Sham potential with a discontinuity at integer particle numbers derived from the GLLB approximation of Gritsenko et al. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the Kohn-Sham gaps to those obtained by accurate many-body perturbation theory based optimized potential methods. In addition, the resulting quasiparticle band gap is compared to experimental gaps. In the GLLB model potential, the exchange-correlation hole is modeled using a GGA energy density and the response of the hole to density variations is evaluated by using the common-denominator approximation and homogeneous electron gas based assumptions. In our modification, we have chosen the PBEsol potential as the GGA to model the exchange hole, and add a consistent correlation potential. The method is implemented in the GPAW code, which allows efficient parallelization to study large systems. A fair agreement for Kohn-Sham and the quasiparticle band gaps with semiconductors and other band gap materials is obtained with a potential which is as fast as GGA to calculate.
The behavior of the surface barrier that forms at the metal-vacuum interface is important for several fields of surface science. Within the Density Functional Theory framework, this surface barrier has two non-trivial components: exchange and correla
The reliability of density-functional calculations hinges on accurately approximating the unknown exchange-correlation (xc) potential. Common (semi-)local xc approximations lack the jump experienced by the exact xc potential as the number of electron
In this work we introduce a new semi-implicit second order correction scheme to the kinetic Kohn-Sham lattice model. The new approach is validated by performing realistic exchange-correlation energy calculations of atoms and dimers of the first two r
Accurately describing excited states within Kohn-Sham (KS) density functional theory (DFT), particularly those which induce ionization and charge transfer, remains a great challenge. Common exchange-correlation (xc) approximations are unreliable for
Using a simplified one-dimensional model of a diatomic molecule, the associated interacting density and corresponding Kohn-Sham potential have been obtained analytically for all fractional molecule occupancies $N$ between 0 and 2. For the homonuclear