ﻻ يوجد ملخص باللغة العربية
}We present a formalism for extending the second moment tight-binding model, incorporating ferro- and anti-ferromagn etic interaction terms which are needed for the FeCr system. For antiferromagnetic and paramagnetic materials, an explicit additional variable representing the spin is required. In a mean-field approximation this spin can be eliminated, and the potential becomes explicitly temperature dependent. For ferromagnetic interactions, this degree of freedom can be eliminated, and the formalism reduces to the embedded atom method (EAM) and we show the equivale nce of existing EAM potentials to magnetic potentials.
Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with poi
We determine experimentally the excited-state interatomic forces in photoexcited bismuth. The forces are obtained by a constrained least-squares fit of the excited-state dispersion obtained by femtosecond time-resolved x-ray diffuse scattering to a f
Introducing an isolated intermediate band (IB) into a wide band gap semiconductor can potentially improve the optical absorption of the material beyond the Shockley-Queisser limitation for solar cells. Here, we present a systematic study of the therm
The revealing properties of transition metal (T)-doped graphene systems are investigated with the use of the first-principles method. The detailed calculations cover the bond length, position and height of adatoms, binding energy, atom-dominated band
We present an ab initio quantum theory of the finite temperature magnetism of iron and nickel. A recently developed technique which combines dynamical mean-field theory with realistic electronic structure methods, successfully describes the many-body