ﻻ يوجد ملخص باللغة العربية
This paper presents an algorithm for a complete and efficient calibration of the Heston stochastic volatility model. We express the calibration as a nonlinear least squares problem. We exploit a suitable representation of the Heston characteristic function and modify it to avoid discontinuities caused by branch switchings of complex functions. Using this representation, we obtain the analytical gradient of the price of a vanilla option with respect to the model parameters, which is the key element of all variants of the objective function. The interdependency between the components of the gradient enables an efficient implementation which is around ten times faster than a numerical gradient. We choose the Levenberg-Marquardt method to calibrate the model and do not observe multiple local minima reported in previous research. Two-dimensional sections show that the objective function is shaped as a narrow valley with a flat bottom. Our method is the fastest calibration of the Heston model developed so far and meets the speed requirement of practical trading.
The Heston stochastic volatility model is a standard model for valuing financial derivatives, since it can be calibrated using semi-analytical formulas and captures the most basic structure of the market for financial derivatives with simple structur
We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a
In the option valuation literature, the shortcomings of one factor stochastic volatility models have traditionally been addressed by adding jumps to the stock price process. An alternate approach in the context of option pricing and calibration of im
How to reconcile the classical Heston model with its rough counterpart? We introduce a lifted version of the Heston model with n multi-factors, sharing the same Brownian motion but mean reverting at different speeds. Our model nests as extreme cases
We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-f