ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Study of Two Extensions of Heston Stochastic Volatility Model

70   0   0.0 ( 0 )
 نشر من قبل Gifty Malhotra
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the option valuation literature, the shortcomings of one factor stochastic volatility models have traditionally been addressed by adding jumps to the stock price process. An alternate approach in the context of option pricing and calibration of implied volatility is the addition of a few other factors to the volatility process. This paper contemplates two extensions of the Heston stochastic volatility model. Out of which, one considers the addition of jumps to the stock price process (a stochastic volatility jump diffusion model) and another considers an additional stochastic volatility factor varying at a different time scale (a multiscale stochastic volatility model). An empirical analysis is carried out on the market data of options with different strike prices and maturities, to compare the pricing performance of these models and to capture their implied volatility fit. The unknown parameters of these models are calibrated using the non-linear least square optimization. It has been found that the multiscale stochastic volatility model performs better than the Heston stochastic volatility model and the stochastic volatility jump diffusion model for the data set under consideration.



قيم البحث

اقرأ أيضاً

This paper presents an algorithm for a complete and efficient calibration of the Heston stochastic volatility model. We express the calibration as a nonlinear least squares problem. We exploit a suitable representation of the Heston characteristic fu nction and modify it to avoid discontinuities caused by branch switchings of complex functions. Using this representation, we obtain the analytical gradient of the price of a vanilla option with respect to the model parameters, which is the key element of all variants of the objective function. The interdependency between the components of the gradient enables an efficient implementation which is around ten times faster than a numerical gradient. We choose the Levenberg-Marquardt method to calibrate the model and do not observe multiple local minima reported in previous research. Two-dimensional sections show that the objective function is shaped as a narrow valley with a flat bottom. Our method is the fastest calibration of the Heston model developed so far and meets the speed requirement of practical trading.
113 - Dan Pirjol , Lingjiong Zhu 2017
We consider the stochastic volatility model $dS_t = sigma_t S_t dW_t,dsigma_t = omega sigma_t dZ_t$, with $(W_t,Z_t)$ uncorrelated standard Brownian motions. This is a special case of the Hull-White and the $beta=1$ (log-normal) SABR model, which are widely used in financial practice. We study the properties of this model, discretized in time under several applications of the Euler-Maruyama scheme, and point out that the resulting model has certain properties which are different from those of the continuous time model. We study the asymptotics of the time-discretized model in the $nto infty$ limit of a very large number of time steps of size $tau$, at fixed $beta=frac12omega^2tau n^2$ and $rho=sigma_0^2tau$, and derive three results: i) almost sure limits, ii) fluctuation results, and iii) explicit expressions for growth rates (Lyapunov exponents) of the positive integer moments of $S_t$. Under the Euler-Maruyama discretization for $(S_t,log sigma_t)$, the Lyapunov exponents have a phase transition, which appears in numerical simulations of the model as a numerical explosion of the asset price moments. We derive criteria for the appearance of these explosions.
In this chapter, we consider volatility swap, variance swap and VIX future pricing under different stochastic volatility models and jump diffusion models which are commonly used in financial market. We use convexity correction approximation technique and Laplace transform method to evaluate volatility strikes and estimate VIX future prices. In empirical study, we use Markov chain Monte Carlo algorithm for model calibration based on S&P 500 historical data, evaluate the effect of adding jumps into asset price processes on volatility derivatives pricing, and compare the performance of different pricing approaches.
The Heston stochastic volatility model is a standard model for valuing financial derivatives, since it can be calibrated using semi-analytical formulas and captures the most basic structure of the market for financial derivatives with simple structur e in time-direction. However, extending the model to the case of time-dependent parameters, which would allow for a parametrization of the market at multiple timepoints, proves more challenging. We present a simple and numerically efficient approach to the calibration of the Heston stochastic volatility model with piecewise constant parameters. We show that semi-analytical formulas can also be derived in this more complex case and combine them with recent advances in computational techniques for the Heston model. Our numerical scheme is based on the calculation of the characteristic function using Gauss-Kronrod quadrature with an additional control variate that stabilizes the numerical integrals. We use our method to calibrate the Heston model with piecewise constant parameters to the foreign exchange (FX) options market. Finally, we demonstrate improvements of the Heston model with piecewise constant parameters upon the standard Heston model in selected cases.
The problem of portfolio allocation in the context of stocks evolving in random environments, that is with volatility and returns depending on random factors, has attracted a lot of attention. The problem of maximizing a power utility at a terminal t ime with only one random factor can be linearized thanks to a classical distortion transformation. In the present paper, we address the problem with several factors using a perturbation technique around the case where these factors are perfectly correlated reducing the problem to the case with a single factor. We illustrate our result with a particular model for which we have explicit formulas. A rigorous accuracy result is also derived using a verification result for the HJB equation involved. In order to keep the notations as explicit as possible, we treat the case with one stock and two factors and we describe an extension to the case with two stocks and two factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا