ﻻ يوجد ملخص باللغة العربية
This year, 2015, marks the centenary of the publication of Einsteins Theory of General Relativity and it has been named the International Year of Light and light-based technologies by the UN General Assembly. It is thus timely to discuss the possibility of broadening the present CERN research program by including a new component based on a novel concept of the light source which could pave a way towards a multipurpose Gamma Factory. The proposed light source could be realized at CERN by using the infrastructure of the existing accelerators. It could push the intensity limits of the presently operating light-sources by at least 7 orders of magnitude, reaching the flux of the order of 10^17 photons/s, in the particularly interesting gamma-ray energy domain of 1 < Ephoton < 400 MeV. This domain is out of reach for the FEL-based light sources. The energy-tuned, quasi-monochromatic gamma beams, together with the gamma-beam-driven, high intensity secondary beams of polarized positrons, polarized muons, neutrons and radioactive ions would constitute the basic research tools of the proposed Gamma Factory. The Gamma Factory could open new research opportunities in a vast domain of uncharted fundamental physics and industrial application territories. It could strengthen the leading role of CERN in the high energy frontier research territory by providing the unprecedented-brilliance secondary beams of polarized muons for the TeV-energy-scale muon collider and the polarized- muon-beam based neutrino factory.
We propose the construction of, and describe in detail, a compact Muon Collider s-channel Higgs Factory.
The Gamma Factory (GF) is an ambitious proposal, currently explored within the CERN Physics Beyond Colliders program, for a source of photons with energies up to $approx 400,$MeV and photon fluxes (up to $approx 10^{17}$ photons per second) exceeding
We discuss the possibility of creating novel research tools by producing and storing highly relativistic beams of highly ionised atoms in the CERN accelerator complex, and by exciting their atomic degrees of freedom with lasers to produce high-energy
High-precision tests of local Lorentz invariance, via monitoring of the sidereal time variation of the photon energies emitted by ultrarelativistic heavy-ion beams and of the beam momentum, are proposed. This paper includes descriptions of the physic
Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-P