ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

134   0   0.0 ( 0 )
 نشر من قبل Luca Stanco
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance can benefit of the large statistics of CC muon events from the primary neutrino beam. Results of our study are reported in detail in this proposal. We aim to design, construct and install two Spectrometers at NEAR and FAR sites of the SBL CERN-PS, compatible with the already proposed LAr detectors. Profiting of the large mass of the two Spectrometers their stand-alone performances have also been exploited.

قيم البحث

اقرأ أيضاً

The LSND experiment has observed a 3.8 sigma excess of anti-nu_e events from an anti-nu_mu beam coming from pions at rest. If confirmed, the LSND anomaly would imply new physics beyond the standard model, presumably in the form of some additional ste rile neutrinos. The MiniBooNE experiment at FNAL-Booster has further searched for the LSND anomaly. Above 475 MeV, the nu_e result is excluding the LSND anomaly to about 1.6 sigma but it introduces an unexplained, new 3.0 sigma anomaly at lower energies, down to 200 MeV. The nu_e data have so far an insufficient statistics to be conclusive with LSNDs anti-nu_e. The present proposal at the CERN-PS is based on two strictly identical LAr-TPC detectors in the near and far positions, respectively at 127 and 850 m from the neutrino (or antineutrino) target and focussing horn, observing the electron-neutrino signal. This project will benefit from the already developed technology of ICARUS T600, well tested on surface in Pavia, without the need of any major R&D activity and without the added problems of an underground experiment (CNGS-2). The superior quality of the Liquid Argon imaging TPC and its unique electron - pi-zero discrimination allow full rejection of the NC background, without efficiency loss for electron neutrino detection. In two years of exposure, the far detector mass of 600 tons and a reasonable utilization of the CERN-PS with the refurbished previous TT7 beam line will allow to collect about 10^6 charged current events, largely adequate to settle definitely the LSND anomaly.
We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest ($K^+ rightarrow mu^+ u_mu$) at the NuMI beamline absorber. These signal $ u_mu$-carbon events are distinguished from primarily pion decay in flight $ u_mu$ and $overline{ u}_mu$ backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9$sigma$ level. The muon kinetic energy, neutrino-nucleus energy transfer ($omega=E_ u-E_mu$), and total cross section for these events is extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of $omega$ using neutrinos, a quantity thus far only accessible through electron scattering.
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of $^{235}$U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segme nted 4 ton $^6$Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 meter water equivalent overburden. Data collected during 33 live-days of reactor operation at a nominal power of 85 MW yields a detection of 25461 $pm$ 283 (stat.) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5$sigma$ statistical significance within two hours of on-surface reactor-on data-taking. A reactor-model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the Reactor Antineutrino Anomaly at 2.2$sigma$ confidence level.
81 - S. Aoki , A. Ariga , T. Ariga 2017
The DsTau project proposes to study tau-neutrino production in high-energy proton interactions. The outcome of this experiment are prerequisite for measuring the $ u_tau$ charged-current cross section that has never been well measured. Precisely meas uring the cross section would enable testing of lepton universality in $ u_tau$ scattering and it also has practical implications for neutrino oscillation experiments and high-energy astrophysical $ u_tau$ observations. $D_s$ mesons, the source of tau neutrinos, following high-energy proton interactions will be studied by a novel approach to detect the double-kink topology of the decays $D_s rightarrow tau u_tau$ and $taurightarrow u_tau X$. Directly measuring $D_srightarrow tau$ decays will provide an inclusive measurement of the $D_s$ production rate and decay branching ratio to $tau$. The momentum reconstruction of $D_s$ will be performed by combining topological variables. This project aims to detect 1,000 $D_s rightarrow tau$ decays in $2.3 times 10^8$ proton interactions in tungsten target to study the differential production cross section of $D_s$ mesons. To achieve this, state-of-the-art emulsion detectors with a nanometric-precision readout will be used. The data generated by this project will enable the $ u_tau$ cross section from DONUT to be re-evaluated, and this should significantly reduce the total systematic uncertainty. Furthermore, these results will provide essential data for future $ u_tau$ experiments such as the $ u_tau$ program in the SHiP project at CERN. In addition, the analysis of $2.3 times 10^8$ proton interactions, combined with the expected high yield of $10^5$ charmed decays as by-products, will enable the extraction of additional physical quantities.
In detecting neutrinos from the Large Hadron Collider, FASER$ u$ will record the most energetic laboratory neutrinos ever studied. While charged current neutrino scattering events can be cleanly identified by an energetic lepton exiting the interacti on vertex, neutral current interactions are more difficult to detect. We explore the potential of FASER$ u$ to observe neutrino neutral current scattering $ u N to u N$, demonstrating techniques to discriminate neutrino scattering events from neutral hadron backgrounds as well as to estimate the incoming neutrino energy given the deep inelastic scattering final state. We find that deep neural networks trained on kinematic observables allow for the measurement of the neutral current scattering cross section over neutrino energies from 100 GeV to several TeV. Such a measurement can be interpreted as a probe of neutrino non-standard interactions that is complementary to limits from other tests such as oscillations and coherent neutrino-nucleus scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا