ﻻ يوجد ملخص باللغة العربية
High-precision tests of local Lorentz invariance, via monitoring of the sidereal time variation of the photon energies emitted by ultrarelativistic heavy-ion beams and of the beam momentum, are proposed. This paper includes descriptions of the physics ideas and the concept for the detector. The experiment results will allow high-precision tests of LLI via anisotropy of the maximum attainable speed of a photon and an ion. The projected accuracy for the asymmetries interpreted in the framework of the anisotropic relativistic mechanics corresponds to the limit on sidereal time variation of the one-way maximum attainable speed at the levels between $10^{-14}$ and $10^{-17}$.
Experimental tests of Lorentz symmetry in systems of all types are critical for ensuring that the basic assumptions of physics are well-founded. Data from all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water Cherenkov detector,
A general framework for tests of Lorentz invariance with electromagnetic waves is presented, allowing for operators of arbitrary mass dimension. Signatures of Lorentz violations include vacuum birefringence, vacuum dispersion, and anisotropies. Sensi
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum
Preliminary work has been done in order to assess the perspectives of metrology and fundamental physics atomic experiments at SYRTE and LKB in the search for physics beyond the Standard Model and General Relativity. The first studies we identified ar
We explore the breaking of Lorentz and CPT invariance in strong interactions at low energy in the framework of chiral perturbation theory. Starting from the set of Lorentz-violating operators of mass-dimension five with quark and gluon fields, we con