ﻻ يوجد ملخص باللغة العربية
The topological Kondo (TK) model has been proposed in solid-state quantum devices as a way to realize non-Fermi liquid behaviors in a controllable setting. Another motivation behind the TK model proposal is the demand to demonstrate the quantum dynamical properties of Majorana fermions, which are at the heart of their potential use in topological quantum computation. Here we consider a junction of crossed Tonks-Girardeau gases arranged in a star-geometry (forming a Y -junction), and we perform a theoretical analysis of this system showing that it provides a physical realization of the topological Kondo model in the realm of cold atom systems. Using computer-generated holography, we experimentally implement a Y-junction suitable for atom trapping, with controllable and independent parameters. The junction and the transverse size of the atom waveguides are of the order of 5 micrometers, leading to favorable estimates for the Kondo temperature and for the coupling across the junction. Since our results show that all the required theoretical and experimental ingredients are available, this provides the demonstration of an ultracold atom device that may in principle exhibit the topological Kondo effect.
We present a novel approach to precisely synthesize arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizati
Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a
The relevance of magnetic impurity problems in cold atom systems depends crucially on the nature of exchange interaction between itinerant fermionic atoms and a localized impurity atom. In particular, Kondo physics occurs only if the exchange interac
Cold atoms tailored by an optical lattice have become a fascinating arena for simulating quantum physics. In this area, one important and challenging problem is creating effective spin-orbit coupling (SOC), especially for fashioning a cold atomic gas
Recent experiments began to explore the topological properties of quench dynamics, i.e. the time evolution following a sudden change in the Hamiltonian, via tomography of quantum gases in optical lattices. In contrast to the well established theory f