ﻻ يوجد ملخص باللغة العربية
Recent experiments began to explore the topological properties of quench dynamics, i.e. the time evolution following a sudden change in the Hamiltonian, via tomography of quantum gases in optical lattices. In contrast to the well established theory for static band insulators or periodically driven systems, at present it is not clear whether, and how, topological invariants can be defined for a general quench of band insulators. Previous work solved a special case of this problem beautifully using Hopf mapping of two-band Hamiltonians in two dimensions. But it only works for topologically trivial initial state and is hard to generalize to multiband systems or other dimensions. Here we introduce the concept of loop unitary constructed from the unitary time-evolution operator, and show its homotopy invariant fully characterizes the dynamical topology. For two-band systems in two dimensions, we prove that the invariant is precisely equal to the change in the Chern number across the quench regardless of the initial state. We further show that the nontrivial dynamical topology manifests as hedgehog defects in the loop unitary, and also as winding and linking of its eigenvectors along a curve where dynamical quantum phase transition occurs. This opens up a systematic route to classify and characterize quantum quench dynamics.
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian topological systems, and are a key concept in the contemporary study of non-Hermitian topology. Here we report the dynamic detection of non-Bloch topological
Topological phases of the famous Altland-Zirnbauer (AZ) tenfold classes are defined on the equilibrium ground states. Whether such equilibrium topological phases have universal correspondence to far-from-equilibrium quantum dynamics is a fundamental
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length
A microscopic definition of the thermodynamic entropy in an isolated quantum system must satisfy (i) additivity, (ii) extensivity and (iii) the second law of thermodynamics. We show that the diagonal entropy, which is the Shannon entropy in the energ
We consider a topological superconducting wire and use the string order parameter to investigate the spatiotemporal evolution of the topological order upon a quantum quench across the critical point. We also analyze the propagation of the initially l