ﻻ يوجد ملخص باللغة العربية
We have made a simple and natural modification of a recent quantum refrigerator model presented by Cleuren et al. in Phys. Rev, Lett.108, 120603 (2012). The original model consist of two metal leads acting as heat baths, and a set of quantum dots that allow for electron transport between the baths. It was shown to violate the dynamic third law of thermodynamics (the unattainability principle, which states that cooling to absolute zero in finite time is impossible), but by taking into consideration the finite energy level spacing in metals we restore the third law, while keeping all of the original models thermodynamic properties intact.
We derive a generalization of the Second Law of Thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenters knowledge to be updated by the m
We consider open quantum systems consisting of a finite system of independent fermions with arbitrary Hamiltonian coupled to one or more equilibrium fermion reservoirs (which need not be in equilibrium with each other). A strong form of the third law
Thermalization of isolated quantum systems has been studied intensively in recent years and significant progresses have been achieved. Here, we study thermalization of small quantum systems that interact with large chaotic environments under the cons
The phenomenon described by our title should surprise no one. What may be surprising though is how easy it is to produce a quantum system with this feature; moreover, that system is one that is often used for the purpose of showing how systems equili
A microscopic definition of the thermodynamic entropy in an isolated quantum system must satisfy (i) additivity, (ii) extensivity and (iii) the second law of thermodynamics. We show that the diagonal entropy, which is the Shannon entropy in the energ