ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Optical Projection in the Analysis of Membrane Fluctuations

147   0   0.0 ( 0 )
 نشر من قبل Matthew Turner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a methodology to measure the mechanical properties of membranes from their fluctuations and apply this to optical microscopy measurements of giant unilamellar vesicles of lipids. We analyze the effect of the projection of thermal shape undulations across the focal depth of the microscope. We derive an analytical expression for the mode spectrum that varies with the focal depth and accounts for the projection of fluctuations onto the equatorial plane. A comparison of our model with existing approaches, that use only the apparent equatorial fluctuations without averaging out of this plane, reveals a significant and systematic reduction in the inferred value of the bending rigidity. Our results are in full agreement with the values measured through X-ray scattering and other micromechanical manipulation techniques, resolving a long standing discrepancy with these other experimental methods.

قيم البحث

اقرأ أيضاً

In a reaction-diffusion system, fluctuations in both diffusion and reaction events, have important effects on the steady-state statistics of the system. Here, we argue through extensive lattice simulations, mean-field type arguments, and the Doi-Peli ti formalism that the collision duration statistics -- i.e., the time two particles stay together in a lattice site -- plays a leading role in determining the steady state of the system. We obtain approximate expressions for the average densities of the chemical species and for the critical diffusion coefficient required to sustain the reaction.
One of the most widely used methods for determination of the bending elasticity modulus of model lipid membranes is the analysis of the shape fluctuations of nearly spherical lipid vesicles. The theoretical basis of this analysis is given by Milner a nd Safran. In their theory the stretching effects are not considered. In the present study we generalized their approach including the stretching effects deduced after an application of statistical mechanics of vesicles.
158 - S. Nesic , R. Cuerno , E. Moro 2015
The spontaneous formation of droplets via dewetting of a thin fluid film from a solid substrate allows for materials nanostructuring, under appropriate experimental control. While thermal fluctuations are expected to play a role in this process, thei r relevance has remained poorly understood, particularly during the nonlinear stages of evolution. Within a stochastic lubrication framework, we show that thermal noise speeds up and substantially influences the formation and evolution of the droplet arrangement. As compared with their deterministic counterparts, for a fixed spatial domain, stochastic systems feature a smaller number of droplets, with a larger variability in sizes and space distribution. Finally, we discuss the influence of stochasticity on droplet coarsening for very long times.
Test area deformations are used to analyse vapour-liquid interfaces of Lennard-Jones particles by molecular dynamics simulation. For planar vapour-liquid interfaces the change in free energy is captured by the average of the corresponding change in e nergy, the leading-order contribution. This is consistent with the commonly used mechanical (pressure tensor) route for the surface tension. By contrast for liquid drops one finds a large second-order contribution associated with fluctuations in energy. Both the first- and second-order terms make comparable contributions, invalidating the mechanical relation for the surface tension of small drops. The latter is seen to increase above the planar value for drop radii of ~8 particle diameters, followed by an apparent weak maximum and slow decay to the planar limit, consistent with a small negative Tolman length.
We have studied the mesoscopic shape fluctuations in aligned multilamellar stacks of DMPC bilayers using the neutron spin-echo technique. The corresponding in plane dispersion relation $tau^{-1}$(q$_{||}$) at different temperatures in the gel (ripple , P$_{beta}$) and the fluid (L$_{alpha}$) phase of this model system has been determined. Two relaxation processes, one at about 10ns and a second, slower process at about 100ns can be quantified. The dispersion relation in the fluid phase is fitted to a smectic hydrodynamic theory, with a correction for finite q$_z$ resolution. We extract values for, the bilayer bending rigidity $kappa$, the compressional modulus of the stacks $B$, and the effective sliding viscosity $eta_3$. The softening of a mode which can be associated with the formation of the ripple structure is observed close to the main phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا