ﻻ يوجد ملخص باللغة العربية
One of the most widely used methods for determination of the bending elasticity modulus of model lipid membranes is the analysis of the shape fluctuations of nearly spherical lipid vesicles. The theoretical basis of this analysis is given by Milner and Safran. In their theory the stretching effects are not considered. In the present study we generalized their approach including the stretching effects deduced after an application of statistical mechanics of vesicles.
The mechanical properties of biological membranes play an important role in the structure and the functioning of living organisms. One of the most widely used methods for determination of the bending elasticity modulus of the model lipid membranes (s
We have studied the mesoscopic shape fluctuations in aligned multilamellar stacks of DMPC bilayers using the neutron spin-echo technique. The corresponding in plane dispersion relation $tau^{-1}$(q$_{||}$) at different temperatures in the gel (ripple
Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermedi
Vesicles prepared in water from a series of diblock copolymers and termed polymersomes are physically characterized. With increasing molecular weight $bar{M}_n$, the hydrophobic core thickness $d$ for the self-assembled bilayers of polyethyleneoxide
Theoretical studies of nearly spherical vesicles and microemulsion droplets, that present typical examples for thermally-excited systems that are subject to constraints, are reviewed. We consider the shape fluctuations of such systems constrained by