ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled hole doping of a Mott insulator of ultracold fermionic atoms

123   0   0.0 ( 0 )
 نشر من قبل Andre Eckardt
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering a system of ultracold atoms in an optical lattice, we propose a simple and robust implementation of a quantum simulator for the homogeneous t-J model with a well-controlled fraction of holes x. The proposed experiment can provide valuable insight into the physics of cuprate superconductors. A similar scheme applied to bosons, moreover, allows one to investigate experimentally the subtle role of inhomogeneity when a system passes from one quantum phase to another.

قيم البحث

اقرأ أيضاً

73 - C. Walsh , P. Semon , G. Sordi 2019
Phase transitions and their associated crossovers are imprinted in the behavior of fluctuations. Motivated by recent experiments on ultracold atoms in optical lattices, we compute the thermodynamic density fluctuations $delta N^2$ of the two-dimensio nal fermionic Hubbard model with plaquette cellular dynamical mean-field theory. To understand the length scale of these fluctuations, we separate the local from the nonlocal contributions to $delta N^2$. We determine the effects of particle statistics, interaction strength $U$, temperature $T$ and density $n$. At high temperature, our theoretical framework reproduces the experimental observations in the doping-driven crossover regime between metal and Mott insulator. At low temperature, there is an increase of thermodynamic density fluctuations, analog to critical opalescence, accompanied by a surprising reduction of the absolute value of their nonlocal contributions. This is a precursory sign of an underlying phase transition between a pseudogap phase and a metallic phase in doped Mott insulators, which should play an important role in the cuprate high-temperature superconductors. Predictions for ultracold atom experiments are made.
The complexity of quantum many-body systems originates from the interplay of strong interactions, quantum statistics, and the large number of quantum-mechanical degrees of freedom. Probing these systems on a microscopic level with single-site resolut ion offers important insights. Here we report site-resolved imaging of two-component fermionic Mott insulators, metals, and band insulators using ultracold atoms in a square lattice. For strong repulsive interactions we observe two-dimensional Mott insulators containing over 400 atoms. For intermediate interactions, we observe a coexistence of phases. From comparison to theory we find trap-averaged entropies per particle of $1.0,k_{mathrm{B}}$. In the band-insulator we find local entropies as low as $0.5,k_{mathrm{B}}$. Access to local observables will aid the understanding of fermionic many-body systems in regimes inaccessible by modern theoretical methods.
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transp ort in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.
140 - R. Haussmann , M. Punk , 2009
We present a calculation of the spectral functions and the associated rf response of ultracold fermionic atoms near a Feshbach resonance. The single particle spectra are peaked at energies that can be modeled by a modified BCS dispersion. However, ev en at very low temperatures their width is comparable to their energy, except for a small region around the dispersion minimum. The structure of the excitation spectrum of the unitary gas at infinite scattering length agrees with recent momentum-resolved rf spectra near the critical temperature. A detailed comparison is made with momentum integrated, locally resolved rf spectra of the unitary gas at arbitrary temperatures and shows very good agreement between theory and experiment. The pair size defined from the width of these spectra is found to coincide with that obtained from the leading gradient corrections to the effective field theory of the superfluid.
The transition from a superfluid to a Mott insulator (MI) phase has been observed in a Bose-Einstein condensate (BEC) of ytterbium (Yb) atoms in an optical lattice. An all-optically produced BEC of 174Yb atoms was loaded into three-dimensional optica l lattices produced by a 532 nm laser beam. The interference pattern was measured after releasing the quantum gas from the trapping potential. As increasing the optical lattice depth, we observed the disappearance of the interference patterns, which is a signature of entering the MI regime. This result is an important step into studies by using a combination of the MI state and the ultranarrow optical transition of ultracold alkaline-earth-like atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا