ﻻ يوجد ملخص باللغة العربية
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like $(d,p)$ reactions must be used instead. Those $(d,p)$ reactions may be viewed as effective three-body reactions and described with Faddeev techniques. An additional challenge posed by $(d,p)$ reactions involving heavier nuclei is the treatment of the Coulomb force. To avoid numerical complications in dealing with the screening of the Coulomb force, recently a new approach using the Coulomb distorted basis in momentum space was suggested. In order to implement this suggestion, one needs to derive a separable representation of neutron- and proton-nucleus optical potentials and compute their matrix elements in this basis.
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like (d,p) reac
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like $(d,p)$ re
Treating $(d,p)$ reactions in a Faddeev-AGS framework requires the interactions in the sub-systems as input. We derived separable representations for the neutron- and proton-nucleus interactions from phenomenological global optical potentials. In ord
A model for the p d --> p d eta reaction published earlier, including the final state interaction (FSI) of all particles, is revisited to investigate the low energy data on this reaction. The three body problem of p-d-eta scattering in the final stat
In this contribution we make a short review of recent progress on topics of current interest in nuclear physics and nuclear astrophysics. In particular, we discuss a re-analysis of the extraction of the dipole response of the pigmy resonance in $^{68