ﻻ يوجد ملخص باللغة العربية
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like $(d,p)$ reactions must be used instead. Those $(d,p)$ reactions may be viewed as effective three-body reactions and described with Faddeev techniques. An additional challenge posed by $(d,p)$ reactions involving heavier nuclei is the treatment of the Coulomb force. To avoid numerical complications in dealing with the screening of the Coulomb force, recently a new approach using the Coulomb distorted basis in momentum space was suggested. In order to implement this suggestion separable representations of neutron- and proton-nucleus optical potentials, which are not only complex but also energy dependent, need to be introduced. Including excitations of the nucleus in the calculation requires a multichannel optical potential, and thus separable representations thereof.
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like (d,p) reac
Background. One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like $(d,p)$ re
Treating $(d,p)$ reactions in a Faddeev-AGS framework requires the interactions in the sub-systems as input. We derived separable representations for the neutron- and proton-nucleus interactions from phenomenological global optical potentials. In ord
The finite range adiabatic wave approximation provides a practical method to analyze (d,p) or (p,d) reactions, however until now the level of accuracy obtained in the description of the reaction dynamics has not been determined. In this work, we perf