ﻻ يوجد ملخص باللغة العربية
In this contribution we make a short review of recent progress on topics of current interest in nuclear physics and nuclear astrophysics. In particular, we discuss a re-analysis of the extraction of the dipole response of the pigmy resonance in $^{68}$Ni based on a continuum discretized coupled-channels calculation in relativistic Coulomb excitation experiments. We also discuss the forthcoming progresses made by our group on the Alt-Sandhas-Grassberber approach to (d,p) reactions and future expectations. The role of separable potentials in solving such equations with a test case based on applications of such potentials to phase-shift analysis is also presented.
We combine the coupled-cluster method and the Lorentz integral transform for the computation of inelastic reactions into the continuum. We show that the bound-state-like equation characterizing the Lorentz integral transform method can be reformulate
Background. One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like $(d,p)$ re
An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like (d,p) reac
Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-distorted basis in momentum space was proposed. Important input quantities for such calculations are the scattering matrix elements for proton- and neutron