ﻻ يوجد ملخص باللغة العربية
We have simulated the formation of a massive galaxy cluster (M$_{200}^{rm crit}$ = 1.1$times$10$^{15}h^{-1}M_{odot}$) in a $Lambda$CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modeled with different radiative physical implementations - such as cooling, star formation and AGN feedback. We compare images of the cluster at $z=0$, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al. (2015): radiative physics + classic SPH can produce entropy cores. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content- for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.
We have simulated the formation of a galaxy cluster in a $Lambda$CDM universe using twelve different codes modeling only gravity and non-radiative hydrodynamics (art, arepo, hydra and 9 incarnations of GADGET). This range of codes includes particle b
Galaxy cluster outskirts mark the transition region from the mildly non-linear cosmic web to the highly non-linear, virialised, cluster interior. It is in this transition region that the intra-cluster medium (ICM) begins to influence the properties o
We examine the properties of the galaxies and dark matter haloes residing in the cluster infall region surrounding the simulated $Lambda$CDM galaxy cluster studied by Elahi et al. (2016) at z=0. The $1.1times10^{15}h^{-1}text{M}_{odot}$ galaxy cluste
We examine subhaloes and galaxies residing in a simulated LCDM galaxy cluster ($M^{rm crit}_{200}=1.1times10^{15}M_odot/h$) produced by hydrodynamical codes ranging from classic Smooth Particle Hydrodynamics (SPH), newer SPH codes, adaptive and movin
We present a clustering comparison of 12 galaxy formation models (including Semi-Analytic Models (SAMs) and Halo Occupation Distribution (HOD) models) all run on halo catalogues and merger trees extracted from a single {Lambda}CDM N-body simulation.