ﻻ يوجد ملخص باللغة العربية
We examine subhaloes and galaxies residing in a simulated LCDM galaxy cluster ($M^{rm crit}_{200}=1.1times10^{15}M_odot/h$) produced by hydrodynamical codes ranging from classic Smooth Particle Hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual objects basis. We find the subhalo population is reproduced to within $lesssim10%$ for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of $lesssim0.1$ dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and $V_{max}$ distributions vary by $approx20%$. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with $10^{9}M_odot/hlesssim M_*lesssim 10^{12}M_odot/h$ can differ by a factor of 4. Individual galaxies show code-to-code scatter of $sim0.5$ dex in stellar mass. Moreover, strong systematic differences exist, with some codes producing galaxies $70%$ smaller than others. The diversity partially arises from the inclusion/absence of AGN feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue even basic galaxy properties, such as the stellar mass to halo mass, should be treated with errors bars of $sim0.2-0.4$ dex.
We examine the properties of the galaxies and dark matter haloes residing in the cluster infall region surrounding the simulated $Lambda$CDM galaxy cluster studied by Elahi et al. (2016) at z=0. The $1.1times10^{15}h^{-1}text{M}_{odot}$ galaxy cluste
We have simulated the formation of a massive galaxy cluster (M$_{200}^{rm crit}$ = 1.1$times$10$^{15}h^{-1}M_{odot}$) in a $Lambda$CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with fu
Galaxy cluster outskirts mark the transition region from the mildly non-linear cosmic web to the highly non-linear, virialised, cluster interior. It is in this transition region that the intra-cluster medium (ICM) begins to influence the properties o
We have simulated the formation of a galaxy cluster in a $Lambda$CDM universe using twelve different codes modeling only gravity and non-radiative hydrodynamics (art, arepo, hydra and 9 incarnations of GADGET). This range of codes includes particle b
We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The par