ترغب بنشر مسار تعليمي؟ اضغط هنا

nIFTy Cosmology: the clustering consistency of galaxy formation models

116   0   0.0 ( 0 )
 نشر من قبل Arnau Pujol
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a clustering comparison of 12 galaxy formation models (including Semi-Analytic Models (SAMs) and Halo Occupation Distribution (HOD) models) all run on halo catalogues and merger trees extracted from a single {Lambda}CDM N-body simulation. We compare the results of the measurements of the mean halo occupation numbers, the radial distribution of galaxies in haloes and the 2-Point Correlation Functions (2PCF). We also study the implications of the different treatments of orphan (galaxies not assigned to any dark matter subhalo) and non-orphan galaxies in these measurements. Our main result is that the galaxy formation models generally agree in their clustering predictions but they disagree significantly between HOD and SAMs for the orphan satellites. Although there is a very good agreement between the models on the 2PCF of central galaxies, the scatter between the models when orphan satellites are included can be larger than a factor of 2 for scales smaller than 1 Mpc/h. We also show that galaxy formation models that do not include orphan satellite galaxies have a significantly lower 2PCF on small scales, consistent with previous studies. Finally, we show that the 2PCF of orphan satellites is remarkably different between SAMs and HOD models. Orphan satellites in SAMs present a higher clustering than in HOD models because they tend to occupy more massive haloes. We conclude that orphan satellites have an important role on galaxy clustering and they are the main cause of the differences in the clustering between HOD models and SAMs.



قيم البحث

اقرأ أيضاً

We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The par ticipating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to- halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the `nIFTy comparison of galaxy formation models is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here.
We study the quenching of star formation as a function of redshift, environment and stellar mass in the galaxy formation simulations of Henriques et al. (2015), which implement an updated version of the Munich semi-analytic model (L-GALAXIES) on the two Millennium Simulations after scaling to a Planck cosmology. In this model massive galaxies are quenched by AGN feedback depending on both black hole and hot gas mass, and hence indirectly on stellar mass. In addition, satellite galaxies of any mass can be quenched by ram-pressure or tidal stripping of gas and through the suppression of gaseous infall. This combination of processes produces quenching efficiencies which depend on stellar mass, host halo mass, environment density, distance to group centre and group central galaxy properties in ways which agree qualitatively with observation. Some discrepancies remain in dense regions and close to group centres, where quenching still seems too efficient. In addition, although the mean stellar age of massive galaxies agrees with observation, the assumed AGN feedback model allows too much ongoing star formation at late times. The fact that both AGN feedback and environmental effects are stronger in higher density environments leads to a correlation between the quenching of central and satellite galaxies which roughly reproduces observed conformity trends inside haloes.
We present a comparison of major methodologies of fast generating mock halo or galaxy catalogues. The comparison is done for two-point and the three-point clustering statistics. The reference catalogues are drawn from the BigMultiDark N-body simulati on. Both friend-of-friends (including distinct halos only) and spherical overdensity (including distinct halos and subhalos) catalogs have been used with the typical number density of a large-volume galaxy surveys. We demonstrate that a proper biasing model is essential for reproducing the power spectrum at quasilinear and even smaller scales. With respect to various clustering statistics a methodology based on perturbation theory and a realistic biasing model leads to very good agreement with N-body simulations. However, for the quadrupole of the correlation function or the power spectrum, only the method based on semi-N-body simulation could reach high accuracy (1% level) at small scales, i.e., r<25 Mpc/h or k>0.15 h/Mpc. Full N-body solutions will remain indispensable to produce reference catalogues. Nevertheless, we have demonstrated that the far more efficient approximate solvers can reach a few percent accuracy in terms of clustering statistics at the scales interesting for the large-scale structure analysis after calibration with a few reference N-body calculations. This makes them useful for massive production aimed at covariance studies, to scan large parameter spaces, and to estimate uncertainties in data analysis techniques, such as baryon acoustic oscillation reconstruction, redshift distortion measurements, etc.
We have simulated the formation of a massive galaxy cluster (M$_{200}^{rm crit}$ = 1.1$times$10$^{15}h^{-1}M_{odot}$) in a $Lambda$CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with fu ll radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modeled with different radiative physical implementations - such as cooling, star formation and AGN feedback. We compare images of the cluster at $z=0$, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al. (2015): radiative physics + classic SPH can produce entropy cores. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content- for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.
We adapt the L-Galaxies semi-analytic model to follow the star-formation histories (SFH) of galaxies -- by which we mean a record of the formation time and metallicities of the stars that are present in each galaxy at a given time. We use these to co nstruct stellar spectra in post-processing, which offers large efficiency savings and allows user-defined spectral bands and dust models to be applied to data stored in the Millennium data repository. We contrast model SFHs from the Millennium Simulation with observed ones from the VESPA algorithm as applied to the SDSS-7 catalogue. The overall agreement is good, with both simulated and SDSS galaxies showing a steeper SFH with increased stellar mass. The SFHs of blue and red galaxies, however, show poor agreement between data and simulations, which may indicate that the termination of star formation is too abrupt in the models. The mean star-formation rate (SFR) of model galaxies is well-defined and is accurately modelled by a double power law at all redshifts: SFR proportional to $1/(x^{-1.39}+x^{1.33})$, where $x=(t_a-t)/3.0,$Gyr, $t$ is the age of the stars and $t_a$ is the loopback time to the onset of galaxy formation; above a redshift of unity, this is well approximated by a gamma function: SFR proportional to $x^{1.5}e^{-x}$, where $x=(t_a-t)/2.0,$Gyr. Individual galaxies, however, show a wide dispersion about this mean. When split by mass, the SFR peaks earlier for high-mass galaxies than for lower-mass ones, and we interpret this downsizing as a mass-dependence in the evolution of the quenched fraction: the SFHs of star-forming galaxies show only a weak mass dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا