ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the $omega-omega$ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor $a$). We find the scalar field equation of motion in $omega-omega$ plane, and show mathematically the property of attractor solutions which correspond to $omega_phisim-1$, $Omega_phi=1$, which avoid the Big rip problem and meets the current observations well.
In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as a coupled quintessence. Based on this consideration, we investigate the dilaton coupled quintessence(DCQ) model in $omega-omega$ plane, which is defined by the equation o
Applying the parametrization of dark energy density, we can construct directly independent-model potentials. In Born-Infeld type phantom dark energy model, we consider four special parametrization equation of state parameter. The evolutive behavior o
We investigate the formation of caustics in Dirac-Born-Infeld type scalar field systems for generic classes of potentials, viz., massive rolling scalar with potential, $V(phi)=V_0e^{pm frac{1}{2} M^2 phi^2}$ and inverse power-law potentials with $V(p
We construct new gravitational vacuum star solutions with a Born-Infeld phantom replacing the de Sitter interior. The model allows for a wide range of masses and radii required by phenomenology, and can be motivated from low energy string theory.
Using a new method--statefinder diagnostic which can differ one dark energy model from the others, we investigate in this letter the dynamics of Born-Infeld(B-I) type dark energy model. The evolutive trajectory of B-I type dark energy with Mexican ha