ترغب بنشر مسار تعليمي؟ اضغط هنا

Relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal

74   0   0.0 ( 0 )
 نشر من قبل Laura Bandiera
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compared to computer simulations, showing a good agreement. We firmly individuated a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We demonstrated that with a short bent crystal, aligned with one of its main axis to the beam direction, it is possible to realize either a total beam steerer or a beam splitter with adjustable intensity. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels.



قيم البحث

اقرأ أيضاً

The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities.
The paper devoted to investigation of volume reflection and channeling processes of ultrarela- tivistic positive charged particles moving in germanium single crystals. We demonstrate that the choice of atomic potential on the basis of Hartree-Fock me thod and correct choice of Debye tem- perature allow us to describe the above mentioned processes in a good agreement with the recent experiments. Moreover, the presented in the paper universal form of equations for volume reflection gives true description of the process at a wide range of particle energies. Standing on this study we make predictions for mean angle reflection (as a function of bending radius) of positive and negative particles for germanium (110) and (111) crystallographic planes.
The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilabs Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polari zed proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.
154 - Enrico Bagli 2013
Crystals with small thickness along the beam exhibit top performance for steering particle beams through planar channeling. For such crystals, the effect of nuclear dechanneling plays an important role because it affects their efficiency. We addresse d the problem through experimental work carried out with 400 GeV/c protons at fixed-target facilities of CERN-SPS. The dependence of efficiency vs. curvature radius has been investigated and compared favourably to the results of modeling. A realistic estimate of the performance of a crystal designed for LHC energy including nuclear dechanneling has been achieved.
A previously unexplored experimental scheme is presented for generating low-divergence, ultra-dense, relativistic, electron-positron beams using 400 GeV/c protons available at facilities such as HiRadMat and AWAKE at CERN. Preliminary Monte-Carlo and Particle-in-cell simulations demonstrate the possibility of generating beams containing $10^{13}-10^{14}$ electron-positron pairs at sufficiently high densities to drive collisionless beam-plasma instabilities, which are expected to play an important role in magnetic field generation and the related radiation signatures of relativistic astrophysical phenomena. The pair beams are quasi-neutral, with size exceeding several skin-depths in all dimensions, allowing for the first time the examination of the effect of competition between transverse and longitudinal instability modes on the growth of magnetic fields. Furthermore, the presented scheme allows for the possibility of controlling the relative density of hadrons to electron-positron pairs in the beam, making it possible to explore the parameter spaces for different astrophysical environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا