ترغب بنشر مسار تعليمي؟ اضغط هنا

Steering efficiency of a ultrarelativistic proton beam in a thin bent crystal

95   0   0.0 ( 0 )
 نشر من قبل Enrico Bagli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Enrico Bagli




اسأل ChatGPT حول البحث

Crystals with small thickness along the beam exhibit top performance for steering particle beams through planar channeling. For such crystals, the effect of nuclear dechanneling plays an important role because it affects their efficiency. We addressed the problem through experimental work carried out with 400 GeV/c protons at fixed-target facilities of CERN-SPS. The dependence of efficiency vs. curvature radius has been investigated and compared favourably to the results of modeling. A realistic estimate of the performance of a crystal designed for LHC energy including nuclear dechanneling has been achieved.

قيم البحث

اقرأ أيضاً

An investigation on stochastic deflection of high-energy charged particles in a bent crystal was carried out. In particular, we investigated the deflection efficiency under axial confinement of both positively and negatively charged particles as a fu nction of the crystal orientation, the choice of the bending plane, and of the charge sign. Analytic estimations and numerical simulations were compared with dedicated experiments at the H4 secondary beam line of SPS North Area, with 120 GeV/$c$ electrons and positrons. In the work presented in this article, the optimal orientations of the plane of bending of the crystal, which allow deflecting the largest number of charged particles using a bent crystal in axial orientation, were found.
An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compare d to computer simulations, showing a good agreement. We firmly individuated a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We demonstrated that with a short bent crystal, aligned with one of its main axis to the beam direction, it is possible to realize either a total beam steerer or a beam splitter with adjustable intensity. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels.
The Large Hadron Collider (LHC) uses a multi-stage collimator system to absorb the growing halo of circulating beams to protect and ensure reliable operation of superconducting magnets. A similar system is planned for the Future Circular Collider (FC C). In anticipation of the LHC operation with high luminosity, research is being conducted to improve the collimation system. Studies have shown that one of the solutions to improve beam collimation is to use channeling in a short curved crystal, which acts as a primary collimator, throwing particles deep into the secondary collimator by channeling. This system is very sensitive to the angular position of the crystal and possible vibrations of different nature. In this paper, we propose a different approach to crystal collimation based on the volume reflection of particles from curved crystallographic planes in a sequence of crystals. The positive qualities of this scheme are substantiated and a multi-strip crystal device capable of implementing it is proposed.
This report overviews studies accomplished in the U70 proton synchrotron of IHEP-Protvino during the recent two decades. Major attention is paid to a routine application of bent crystals for beam extraction from the machine. It has been confirmed exp erimentally that efficiency of beam extraction with a crystal deflector of around 85% is well feasible for a proton beam with intensity up to 1012 protons per cycle. Another trend is to use bent crystals for halo collimation in a high energy collider. New promising options emerge for, say, LHC and ILC based on the volume reflection effect, which has been discovered recently in machine study runs at U70 of IHEP (50 GeV) and SPS of CERN (400 GeV).
The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا