ﻻ يوجد ملخص باللغة العربية
The paper devoted to investigation of volume reflection and channeling processes of ultrarela- tivistic positive charged particles moving in germanium single crystals. We demonstrate that the choice of atomic potential on the basis of Hartree-Fock method and correct choice of Debye tem- perature allow us to describe the above mentioned processes in a good agreement with the recent experiments. Moreover, the presented in the paper universal form of equations for volume reflection gives true description of the process at a wide range of particle energies. Standing on this study we make predictions for mean angle reflection (as a function of bending radius) of positive and negative particles for germanium (110) and (111) crystallographic planes.
We show that theory predictions for volume reflection in bent crystals agree with recent experimental data. This makes possible to predict volume reflection angle and efficiency in a broad range of energy for various crystals. A simple formula is pro
An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compare
The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various cry
The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical
We present the experimental observation of the reduction of multiple scattering of high-energy positively charged particles during channeling in single crystals. According to our measurements the rms angle of multiple scattering in the plane orthogon