ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Study on Emergence of Kinked Flux Tube for Understanding of Possible Origin of Delta-spot Regions

52   0   0.0 ( 0 )
 نشر من قبل Shinsuke Takasao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out a magnetohydrodynamics simulation where a subsurface twisted kink-unstable flux tube emerges from the solar interior to the corona. Unlike the previous expectations based on the bodily emergence of a knotted tube, we found that the kinked tube can spontaneously form a complex quadrupole structure at the photosphere. Due to the development of the kink instability before the emergence, the magnetic twist at the kinked apex of the tube is greatly reduced, although the other parts of the tube is still strongly twisted. This leads to the formation of a complex quadrupole structure: a pair of the coherent, strongly twisted spots and a narrow complex bipolar pair between it. The quadrupole is formed by the submergence of a portion of emerged magnetic fields. This result is relevant for understanding of the origin of the complex multipolar $delta$-spot regions that have a strong magnetic shear and emerge with polarity orientations not following Hale-Nicholson and Joy Laws.



قيم البحث

اقرأ أيضاً

It has been observationally well established that the magnetic configurations most favorable for producing energetic flaring events reside in delta-spots, a class of sunspots defined as having opposite polarity umbrae sharing a common penumbra. They are frequently characterized by extreme compactness, strong rotation and anti-Hale orientation. Numerous studies have shown that nearly all of the largest solar flares originate in delta-spots, making the understanding of these structures a fundamental step in predicting space weather. Despite their important influence on the space environment, surprisingly little is understood about the origin and behavior of delta-spots. In this paper, we perform a systematic study of the behavior of emerging flux ropes to test a theoretical model for the formation of delta-spots: the kink instability of emerging flux ropes. We simulated the emergence of highly twisted, kink-unstable flux ropes from the convection zone into the corona, and compared their photospheric properties to those of emerged weakly twisted, kink-stable flux ropes. We show that the photospheric manifestations of the emergence of highly twisted flux ropes closely match the observed properties of delta-spots, and we discuss the resulting implications for observations. Our results strongly support and extend previous theoretical work that suggested that the kink instability of emerging flux ropes is a promising candidate to explain delta-spot formation, as it reproduces their key characteristics very well.
Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ tau] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, tau is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of tau, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes
We studied 101 flux emergence events ranging from small ephemeral regions to large emerging flux regions which were observed with Hinode Solar Optical Telescope filtergram. We investigated how the total magnetic flux of the emergence event controls t he nature of emergence. To determine the modes of emergences, horizontal velocity fields of global motion of the magnetic patches in the flux emerging sites were measured by the local correlation tracking. Between two main polarities of the large emerging flux regions with more than around 2 times 10^19 Mx, there were the converging flows of anti-polarity magnetic patches. On the other hand, small ephemeral regions showed no converging flow but simple diverging pattern. When we looked into the detailed features in the emerging sites, irrespective of the total flux and the spatial size, all the emergence events were observed to consist of single or multiple elementary emergence unit(s). The typical size of unitary emergence is 4 Mm and consistent with the simulation results. From the statistical study of the flux emergence events, the maximum spatial distance between two main polarities, the magnetic flux growth rate and the mean separation speed were found to follow the power-law functions of the total magnetic flux with the indices of 0.27, 0.57, and -0.16, respectively. From the discussion on the observed power-law relations, we got a physical view of solar flux emergence that emerging magnetic fields float and evolve balancing to the surrounding turbulent atmosphere. Key words: Sun: magnetic fields - Sun: emerging flux - Sun: photosphere - Sun: chromosphere
223 - Shin Toriumi 2021
Solar flares and coronal mass ejections are among the most prominent manifestations of the magnetic activity of the Sun. The strongest events of them tend to occur in active regions (ARs) that are large, complex, and dynamically evolving. However, it is not clear what the key observational features of such ARs are, and how these features are produced. This article answers these fundamental questions based on morphological and magnetic characteristics of flare-productive ARs and their evolutionary processes, i.e., large-scale flux emergence and subsequent AR formation, which have been revealed in observational and theoretical studies. We also present the latest modeling of flare-productive ARs achieved using the most realistic flux emergence simulations in a very deep computational domain. Finally, this review discusses the future perspective pertaining to relationships of flaring solar ARs with the global-scale dynamo and stellar superflares.
160 - Fang Fang , Yuhong Fan 2015
$delta$-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. (2014). Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact $delta$-sunspot with a sharp polarity inversion line. The formation of the $delta$-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hales law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the Delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا