ترغب بنشر مسار تعليمي؟ اضغط هنا

$delta$-Sunspot Formation in Simulation of Active-Region-Scale Flux Emergence

113   0   0.0 ( 0 )
 نشر من قبل Fang Fang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$delta$-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. (2014). Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact $delta$-sunspot with a sharp polarity inversion line. The formation of the $delta$-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hales law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the Delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

قيم البحث

اقرأ أيضاً

We analyze data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-l ived dark features in Ca II H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they reached chromospheric heights) with pre-existing magnetic fields as well as to reconnection/cancellation events in U-loop segments of emerging serpentine fields. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet sun regions and serpentine flux emergence signatures in active regions. Incorporating the novel features of granular-scale flux emergence presented in this study we advance the scenario for serpentine flux emergence.
Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the act ivity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly-magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.
We analyse a sequence of high-resolution spectropolarimetric observations of a sunspot taken at the 1-m SST, to determine the nature of flux emergence in a light bridge and the processes related to its evolution in the photosphere and chromosphere. B lueshifts of about 2 km/s are seen near the entrance of a granular light bridge on the limbward side of the spot. They lie next to a strongly redshifted patch that appeared 6 mins earlier. Both patches are seen for 25 mins until the end of the sequence. The blueshifts coincide with an elongated emerging granule, while the redshifts appear at the end of it. In the photosphere, the development of the blueshifts is accompanied by a simultaneous increase in field strength and inclination, with the field becoming nearly horizontal. In the redshifted patch, the magnetic field is equally horizontal but of opposite polarity. An intense brightening is seen in the Ca filtergrams over these features, 17 mins after they emerge in the photosphere. The brightening is due to emission in the blue wing of the Ca line, close to its knee. Non-LTE
We present a comprehensive radiative magnetohydrodynamic simulation of the quiet Sun and large solar active regions. The 197 Mm wide simulation domain spans from the uppermost convection zone to over 100 Mm in the solar corona. Sophisticated treatmen ts of radiative transfer and conduction transport provide the necessary realism for synthesizing observables to compare with remote sensing observations of the Sun. This model self-consistently reproduces observed features of the quiet Sun, emerging and developed active regions, and solar flares up to M class. Here, we report an overview on the first results. The surface magnetoconvection yields an upward Poynting flux that is dissipated in the corona and heats the plasma to over one million K. The quiescent corona also presents ubiquitous propagating waves, jets, and bright points with sizes down to 2 Mm. Magnetic flux bundles generated in a solar convective dynamo emerge into the photosphere and gives rise to strong and complex active regions with Over $10^{23}$ Mx magnetic flux. The coronal free magnetic energy, which is about 18% of the total magnetic energy, accumulates to about $10^{33}$ erg. The coronal magnetic field is not forcefree, as the Lorentz force needs to balance the pressure force and viscous stress as well as to drive magnetic field evolution. Emission measure from $log_{10}T = 4.5$ to $log_{10}T > 7$ provides a comprehensive view on structures and dynamics in the active region corona, such as coronal loops in various lengths and temperatures, mass circulation by evaporation and condensation, and eruptions from jets to large-scale mass ejections.
In this work, we investigate the formation of a magnetic flux rope (MFR) above the central polarity inversion line (PIL) of NOAA Active Region 12673 during its early emergence phase. Through analyzing the photospheric vector magnetic field, extreme u ltraviolet (EUV) and ultraviolet (UV) images, extrapolated three-dimensional (3D) non-linear force-free fields (NLFFFs), as well as the photospheric motions, we find that with the successive emergence of different bipoles in the central region, the conjugate polarities separate, resulting in collision between the non-conjugated opposite polarities. Nearly-potential loops appear above the PIL at first, then get sheared and merge at the collision locations as evidenced by the appearance of a continuous EUV sigmoid on 2017 September 4, which also indicates the formation of an MFR. The 3D NLFFFs further reveal the gradual buildup of the MFR, accompanied by the appearance of two elongated bald patches (BPs) at the collision locations and a very low-lying hyperbolic flux tube configuration between the BPs. The final MFR has relatively steady axial flux and average twist number of around $2.1times 10^{20}$~Mx and -1.5, respective. Shearing motions are found developing near the BPs when the collision occurs, with flux cancellation and UV brightenings being observed simultaneously, indicating the development of a process named as collisional shearing (firstly identified by Chintzoglou et al. 2019). The results clearly show that the MFR is formed by collisional shearing, i.e., through shearing and flux cancellation driven by the collision between non-conjugated opposite polarities during their emergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا