ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Twisted flux-tube Emergence in Active Regions

319   0   0.0 ( 0 )
 نشر من قبل Mariano Poisson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ tau] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, tau is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of tau, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes



قيم البحث

اقرأ أيضاً

223 - Shin Toriumi 2021
Solar flares and coronal mass ejections are among the most prominent manifestations of the magnetic activity of the Sun. The strongest events of them tend to occur in active regions (ARs) that are large, complex, and dynamically evolving. However, it is not clear what the key observational features of such ARs are, and how these features are produced. This article answers these fundamental questions based on morphological and magnetic characteristics of flare-productive ARs and their evolutionary processes, i.e., large-scale flux emergence and subsequent AR formation, which have been revealed in observational and theoretical studies. We also present the latest modeling of flare-productive ARs achieved using the most realistic flux emergence simulations in a very deep computational domain. Finally, this review discusses the future perspective pertaining to relationships of flaring solar ARs with the global-scale dynamo and stellar superflares.
We carried out a magnetohydrodynamics simulation where a subsurface twisted kink-unstable flux tube emerges from the solar interior to the corona. Unlike the previous expectations based on the bodily emergence of a knotted tube, we found that the kin ked tube can spontaneously form a complex quadrupole structure at the photosphere. Due to the development of the kink instability before the emergence, the magnetic twist at the kinked apex of the tube is greatly reduced, although the other parts of the tube is still strongly twisted. This leads to the formation of a complex quadrupole structure: a pair of the coherent, strongly twisted spots and a narrow complex bipolar pair between it. The quadrupole is formed by the submergence of a portion of emerged magnetic fields. This result is relevant for understanding of the origin of the complex multipolar $delta$-spot regions that have a strong magnetic shear and emerge with polarity orientations not following Hale-Nicholson and Joy Laws.
3D numerical simulations of a horizontal magnetic flux tube emergence with different twist are carried out in a computational domain spanning the upper layers of the convection zone to the lower corona. We use the Oslo Staggered Code to solve the ful l MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. The emergence of the magnetic flux tube input at the bottom boundary into a weakly magnetized atmosphere is presented. The photospheric and chromospheric response is described with magnetograms, synthetic images and velocity field distributions. The emergence of a magnetic flux tube into such an atmosphere results in varied atmospheric responses. In the photosphere the granular size increases when the flux tube approaches from below. In the convective overshoot region some 200km above the photosphere adiabatic expansion produces cooling, darker regions with the structure of granulation cells. We also find collapsed granulation in the boundaries of the rising flux tube. Once the flux tube has crossed the photosphere, bright points related with concentrated magnetic field, vorticity, high vertical velocities and heating by compressed material are found at heights up to 500km above the photosphere. At greater heights in the magnetized chromosphere, the rising flux tube produces a cool, magnetized bubble that tends to expel the usual chromospheric oscillations. In addition the rising flux tube dramatically increases the chromospheric scale height, pushing the transition region and corona aside such that the chromosphere extends up to 6Mm above the photosphere. The emergence of magnetic flux tubes through the photosphere to the lower corona is a relatively slow process, taking of order 1 hour.
164 - Fang Fang , Yuhong Fan 2015
$delta$-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. (2014). Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact $delta$-sunspot with a sharp polarity inversion line. The formation of the $delta$-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hales law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the Delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.
We analyze data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-l ived dark features in Ca II H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they reached chromospheric heights) with pre-existing magnetic fields as well as to reconnection/cancellation events in U-loop segments of emerging serpentine fields. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet sun regions and serpentine flux emergence signatures in active regions. Incorporating the novel features of granular-scale flux emergence presented in this study we advance the scenario for serpentine flux emergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا