ﻻ يوجد ملخص باللغة العربية
Strongly interacting particles in one dimension subject to external confinement have become a topic of considerable interest due to recent experimental advances and the development of new theoretical methods to attack such systems. In the case of equal mass fermions or bosons with two or more internal degrees of freedom, one can map the problem onto the well-known Heisenberg spin models. However, many interesting physical systems contain mixtures of particles with different masses. Therefore, a generalization of the recent strong-coupling techniques would be highly desirable. This is particularly important since such problems are generally considered non-integrable and thus the hugely successful Bethe ansatz approach cannot be applied. Here we discuss some initial steps towards this goal by investigating small ensembles of one-dimensional harmonically trapped particles where pairwise interactions are either vanishing or infinitely strong with focus on the mass-imbalanced case. We discuss a (semi)-analytical approach to describe systems using hyperspherical coordinates where the interaction is effectively decoupled from the trapping potential. As an illustrative example we analyze mass-imbalanced four-particle two-species mixtures with strong interactions between the two species. For such systems we calculate the energies, densities and pair-correlation functions.
We show that the dynamics of particles in a one-dimensional harmonic trap with hard-core interactions can be solvable for certain arrangements of unequal masses. For any number of particles, there exist two families of unequal mass particles that hav
We investigate continuous-time quantum walks of two indistinguishable particles [bosons, fermions or hard-core bosons (HCBs)] in one-dimensional lattices with nearest-neighbor interactions. The results for two HCBs are well consistent with the recent
We investigate continuous-time quantum walks of two indistinguishable particles (bosons, fermions or hard-core bosons) in one-dimensional lattices with nearest-neighbour interactions. The two interacting particles can undergo independent- and/or co-w
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady stat
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and superradiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix m