ترغب بنشر مسار تعليمي؟ اضغط هنا

Arrays of strongly-coupled atoms in a one-dimensional waveguide

94   0   0.0 ( 0 )
 نشر من قبل Janne Ruostekoski
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and superradiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide including the emergence of narrow Fano resonances can be understood by the resonance features of the eigenmodes. We describe a method based on superradiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.



قيم البحث

اقرأ أيضاً

We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to stud y iconic situations in spin physics, such as the implementation of the Heisenberg model in square arrays, and the study of spin transport in 1D. We first benchmark the Hamiltonian engineering for two atoms, and then demonstrate the freezing of the magnetization on an initially magnetized 2D array. Finally, we explore the dynamics of 1D domain wall systems with both periodic and open boundary conditions. We systematically compare our data with numerical simulations and assess the residual limitations of the technique as well as routes for improvements. The geometrical versatility of the platform, combined with the flexibility of the simulated Hamiltonians, opens exciting prospects in the field of quantum simulation, quantum information processing and quantum sensing.
We investigate the subradiance properties of $ngeq 2$ multilevel fermionic atoms loaded into the lowest motional level of a single trap (e.g.~a single optical lattice site or an optical tweezer). As pointed out in our previous work [arXiv:1907.05541] , perfectly dark subradiant states emerge from the interplay between fermionic statistics and dipolar interactions. While in [arXiv:1907.05541] we focused on the $n=2$ case, here we provide an in-depth analysis of the single-site dark states for generic filling $n$, and show a tight connection between generic dark states and total angular momentum eigenstates. We show how the latter can also be used to understand the full eigenstate structure of the single-site problem, which we analyze numerically. Apart from this, we discuss two possible schemes to coherently prepare dark states using either a Raman transition or an external magnetic field to lift the Zeeman degeneracy. Although the analysis focuses on the single-site problem, we show that multi-site dark states can be trivially constructed in any geometry out of product states of single-site dark states. Finally, we discuss some possible implementations with alkaline-earth(-like) atoms such as $^{171}$Yb or $^{87}$Sr loaded into optical lattices, where they could be used for potential applications in quantum metrology and quantum information.
Atomic systems, ranging from trapped ions to ultracold and Rydberg atoms, offer unprecedented control over both internal and external degrees of freedom at the single-particle level. They are considered among the foremost candidates for realizing qua ntum simulation and computation platforms that can outperform classical computers at specific tasks. In this work, we describe a realistic experimental toolbox for quantum information processing with neutral alkaline-earth-like atoms in optical tweezer arrays. In particular, we propose a comprehensive and scalable architecture based on a programmable array of alkaline-earth-like atoms, exploiting their electronic clock states as a precise and robust auxiliary degree of freedom, and thus allowing for efficient all-optical one- and two-qubit operations between nuclear spin qubits. The proposed platform promises excellent performance thanks to high-fidelity register initialization, rapid spin-exchange gates and error detection in readout. As a benchmark and application example, we compute the expected fidelity of an increasing number of subsequent SWAP gates for optimal parameters, which can be used to distribute entanglement between remote atoms within the array.
One-dimensional atomic mixtures of fermions can effectively realize spin chains and thus constitute a clean and controllable platform to study quantum magnetism. Such strongly correlated quantum systems are also of sustained interest to quantum simul ation and quantum computation due to their computational complexity. In this article, we exploit spectral graph theory to completely characterize the symmetry properties of one-dimensional fermionic mixtures in the strong interaction limit. We also develop a powerful method to obtain the so-called Tan contacts associated with certain symmetry classes. In particular, compared to brute force diagonalization that is already virtually impossible for a moderate number of fermions, our analysis enables us to make unprecedented efficient predictions about the energy gap of complex spin mixtures. Our theoretical results are not only of direct experimental interest, but also provide important guidance for the design of adiabatic control protocols in strongly correlated fermion mixtures.
We study coherent excitation hopping in a spin chain realized using highly excited individually addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a long range resonant dipole-dipole coupling that scal es as the inverse third power of the lattice spacing, $C_3/R^3$. The experimental data demonstrate the importance of next neighbor interactions which are manifest as revivals in the excitation dynamics. The results suggest that arrays of Rydberg atoms are ideally suited to large scale, high-fidelity quantum simulation of spin dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا