ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Walks of Two Interacting Particles in One Dimension

236   0   0.0 ( 0 )
 نشر من قبل Chaohong Lee
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate continuous-time quantum walks of two indistinguishable particles (bosons, fermions or hard-core bosons) in one-dimensional lattices with nearest-neighbour interactions. The two interacting particles can undergo independent- and/or co-walking dependent on both quantum statistics and interaction strength. We find that two strongly interacting particles may form a bound state and then co-walk like a single composite particle with statistics-dependent propagation speed. Such an effective single-particle picture of co-walking is analytically derived in the context of degenerate perturbation and the analytical results are well consistent with direct numerical simulation. In addition to implementing universal quantum computation and observing bound states, two-particle quantum walks offer a novel route to detecting quantum statistics. Our theoretical results can be examined in experiments of light propagations in two-dimensional waveguide arrays or spin-impurity dynamics of ultracold atoms in one-dimensional optical lattices.



قيم البحث

اقرأ أيضاً

We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operati on is assumed to be deterministic. Each coin is an independent identically distributed random variable with values in the group of two dimensional unitary matrices. We derive sufficient conditions on the probability distribution of the coins such that the system exhibits dynamical localization. Put differently, the tunneling probability between two lattice sites decays rapidly for almost all choices of random coins and after arbitrary many time steps with increasing distance. Our findings imply that this effect takes place if the coin is chosen at random from the Haar measure, or some measure continuous with respect to it, but also for a class of discrete probability measures which support consists of two coins, one of them being the Hadamard coin.
We investigate continuous-time quantum walks of two indistinguishable particles [bosons, fermions or hard-core bosons (HCBs)] in one-dimensional lattices with nearest-neighbor interactions. The results for two HCBs are well consistent with the recent experimental observation of two-magnon dynamics [Nature 502, 76 (2013)]. The two interacting particles can undergo independent- and/or co-walking depending on both quantum statistics and interaction strength. Two strongly interacting particles may form a bound state and then co-walk like a single composite particle with statistics-dependent walk speed. Analytical solutions for the scattering and bound states, which appear in the two-particle quantum walks, are obtained by solving the eigenvalue problem in the two-particle Hilbert space. In the context of degenerate perturbation theory, an effective single-particle model for the quantum co-walking is analytically derived and the walk seep of bosons is found to be exactly three times of the ones of fermions/HCBs. Our result paves the way for experimentally exploring quantum statistics via two-particle quantum walks.
76 - Chusei Kiumi , Kei Saito 2020
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de fect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
Quantum walks on the line with a single particle possess a classical analog. Involving more walkers opens up the possibility to study collective quantum effects, such as many particle correlations. In this context, entangled initial states and indist inguishability of the particles play a role. We consider directional correlations between two particles performing a quantum walk on a line. For non-interacting particles we find analytic asymptotic expressions and give the limits of directional correlations. We show that introducing $delta$-interaction between the particles, one can exceed the limits for non-interacting particles.
The discrete-time quantum walk (QW) is a quantum version of the random walk (RW) and has been widely investigated for the last two decades. Some remarkable properties of QW are well known. For example, QW has a ballistic spreading, i.e., QW is quadra tically faster than RW. For some cases, localization occurs: a walker stays at the starting position forever. In this paper, we consider stationary measures of two-state QWs on the line. It was shown that for any space-homogeneous model, the uniform measure becomes the stationary measure. However, the corresponding result for space-inhomogeneous model is not known. Here, we present a class of space-inhomogeneous QWs on the line and cycles in which the uniform measure is stationary. Furthermore, we briefly discuss a difference between QWs and RWs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا