ترغب بنشر مسار تعليمي؟ اضغط هنا

DEMIRCI: An RFQ Design Software

68   0   0.0 ( 0 )
 نشر من قبل Betul Yasatekin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development and production of radio frequency quadrupoles, which are used for accelerating low-energy ions to high energies, continues since 1970s. The development of RFQ design software packages, which can provide ease of use with a graphical interface, can visualize the behavior of the ion beam inside the RFQ, and can run on both Unix and Windows platforms, has become inevitable due to increasing interest around the world. In this context, a new RFQ design software package, DEMIRCI, has been under development. To meet the user expectations, a number of new features have been recently added to DEMIRCI. Apart from being usable via both graphical interface and command line, DEMIRCI has been enriched with beam dynamics calculations. This new module gives users the possibility to define and track an input beam and to monitor its behavior along the RFQ. Additionally, the Windows OS has been added to the list of supported platforms. Finally, the addition of more realistic 8 term potential results has been ongoing. This note will summarize the latest developments and results from DEMIRCI RFQ design software.



قيم البحث

اقرأ أيضاً

87 - E. Celebi 2021
The RFQ design tool DEMIRCI aims to provide fast and accurate simulation of a light ion accelerating cavity and of the ion beam in it. It is a modern tool with a graphical user interface leading to a point and click method to help the designer. This article summarises the recent software developments such as the addition of RFQ acceptance match, beam dynamics and 8-term potential coefficient calculations. Its results are compared to other similar software, to discuss the attained compatibility level.
A 5-MeV RFQ designed for a proton current up to 100-mA CW is now under construction as part of the High Intensity Proton Injector project (IPHI). Its computed transmission is greater than 99 %. The main goals of the project are to verify the accuracy of the design codes, to gain the know-how on fabrication, tuning procedures and operations, to measure the output beam characteristics in order to optimise the higher energy part of the linac, and to reach a high availability with minimum beam trips. A cold model has been built to develop the tuning procedure. The present status of the IPHI RFQ is presented.
This paper presents measurements of the beam transmission performed on the 4-rod RFQ currently under operation at Fermilab. The beam current has been measured at the RFQ exit as a function of the magnetic field strength in the two LEBT solenoids. Thi s measurement is compared with scans performed on the FermiGrid with the beam dynamics code TRACK. A particular attention is given to the impact, on the RFQ beam transmission, of the space-charge neutralization in the LEBT.
We present a description of the Radio Frequency Quadrupole (RFQ) ion trap built as part of the TITAN facility. It consists of a gas-filled, segmented, linear Paul trap and is the first stage of the TITAN setup with the purpose of cooling and bunching radioactive ion beams delivered from ISAC-TRIUMF. This is the first such device to be driven digitally, i.e., using a high voltage ($V_{pp} = rm{400 , V}$), wide bandwidth ($0.2 < f < 1.2 , rm{MHz}$) square-wave as compared to the typical sinusoidal wave form. Results from the commissioning of the device as well as systematic studies with stable and radioactive ions are presented including efficiency measurements with stable $^{133}$Cs and radioactive $^{124, 126}$Cs. A novel and unique mode of operation of this device is also demonstrated where the cooled ion bunches are extracted in reverse mode, i.e., in the same direction as previously injected.
102 - Yuhong Zhang 2015
I present here a new ring-ring design of eRHIC, a polarized electron-ion collider based on RHIC at BNL. This alternate eRHIC design utilizes high repetition rate colliding beams and is likely able to deliver the performance to meet the requirements o f the science program with low technical risk and modest accelerator R&D. The expected performance includes high luminosities over multiple collision points and a broad CM energy range with a maximum value up to 2x10^34 cm-2s-1 per detector, and polarization higher than 70% for the colliding electron and light ion beams. This new design calls for reuse of decommissioned facilities in the US, namely, the PEP-II high energy ring and one section of the SLAC warm linac as a full energy electron injector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا