ترغب بنشر مسار تعليمي؟ اضغط هنا

Status Report on the 5 Mev Iphi RFQ

54   0   0.0 ( 0 )
 نشر من قبل Robin Ferdinand
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A 5-MeV RFQ designed for a proton current up to 100-mA CW is now under construction as part of the High Intensity Proton Injector project (IPHI). Its computed transmission is greater than 99 %. The main goals of the project are to verify the accuracy of the design codes, to gain the know-how on fabrication, tuning procedures and operations, to measure the output beam characteristics in order to optimise the higher energy part of the linac, and to reach a high availability with minimum beam trips. A cold model has been built to develop the tuning procedure. The present status of the IPHI RFQ is presented.



قيم البحث

اقرأ أيضاً

Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the optics design has been optimised to improve the collimation efficiency. This report presents the current status of the the post-linac collimation system of CLIC. Part I of this report is dedicated to the study of the CLIC energy collimation system.
Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the optics design has been optimised to improve the collimation efficiency. This report presents the current status of the the post-linac collimation system of CLIC. Part II is mainly dedicated to the study of the betatron collimation system and collimator wakefield effects.
The development and production of radio frequency quadrupoles, which are used for accelerating low-energy ions to high energies, continues since 1970s. The development of RFQ design software packages, which can provide ease of use with a graphical in terface, can visualize the behavior of the ion beam inside the RFQ, and can run on both Unix and Windows platforms, has become inevitable due to increasing interest around the world. In this context, a new RFQ design software package, DEMIRCI, has been under development. To meet the user expectations, a number of new features have been recently added to DEMIRCI. Apart from being usable via both graphical interface and command line, DEMIRCI has been enriched with beam dynamics calculations. This new module gives users the possibility to define and track an input beam and to monitor its behavior along the RFQ. Additionally, the Windows OS has been added to the list of supported platforms. Finally, the addition of more realistic 8 term potential results has been ongoing. This note will summarize the latest developments and results from DEMIRCI RFQ design software.
113 - A.Portaa 2009
Double Chooz main target is to measure Theta13 oscillation parameter by comparing reactor neutrino fluxes in two identical detectors located respectively at 400 m and 1 km away from the 2 Chooz reactor cores. The far detector is now under constructio n, while we have just completed the design phase of the near one. In this report I will discuss the detector principle, sensitivity and its present construction status.
This paper presents measurements of the beam transmission performed on the 4-rod RFQ currently under operation at Fermilab. The beam current has been measured at the RFQ exit as a function of the magnetic field strength in the two LEBT solenoids. Thi s measurement is compared with scans performed on the FermiGrid with the beam dynamics code TRACK. A particular attention is given to the impact, on the RFQ beam transmission, of the space-charge neutralization in the LEBT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا