ﻻ يوجد ملخص باللغة العربية
We present a description of the Radio Frequency Quadrupole (RFQ) ion trap built as part of the TITAN facility. It consists of a gas-filled, segmented, linear Paul trap and is the first stage of the TITAN setup with the purpose of cooling and bunching radioactive ion beams delivered from ISAC-TRIUMF. This is the first such device to be driven digitally, i.e., using a high voltage ($V_{pp} = rm{400 , V}$), wide bandwidth ($0.2 < f < 1.2 , rm{MHz}$) square-wave as compared to the typical sinusoidal wave form. Results from the commissioning of the device as well as systematic studies with stable and radioactive ions are presented including efficiency measurements with stable $^{133}$Cs and radioactive $^{124, 126}$Cs. A novel and unique mode of operation of this device is also demonstrated where the cooled ion bunches are extracted in reverse mode, i.e., in the same direction as previously injected.
A good understanding of the luminosity performance in a collider, as well as reliable tools to analyse, predict, and optimise the performance, are of great importance for the successful planning and execution of future runs. In this article, we prese
The RFQ design tool DEMIRCI aims to provide fast and accurate simulation of a light ion accelerating cavity and of the ion beam in it. It is a modern tool with a graphical user interface leading to a point and click method to help the designer. This
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storag
Realization of a short bunch beam by manipulating the longitudinal phase space distribution with a finite longitudinal dispersion following an off-crest accelera- tion is a widely used technique. The technique was applied in a compact test accelerato
We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the Large Hadron Collider (LHC) when it operates with 208P