ﻻ يوجد ملخص باللغة العربية
We obtain a class of regular black hole solutions in four-dimensional $f(R)$ gravity, $R$ being the curvature scalar, coupled to a nonlinear electromagnetic source. The metric formalism is used and static spherically symmetric spacetimes are assumed. The resulting $f(R)$ and nonlinear electrodynamics functions are characterized by a one-parameter family of solutions which are generalizations of known regular black holes in general relativity coupled to nonlinear electrodynamics. The related regular black holes of general relativity are recovered when the free parameter vanishes, in which case one has $f(R)propto R$. We analyze the regularity of the solutions and also show that there are particular solutions that violate only the strong energy condition
In this work, we study the existence of regular black holes solutions with multihorizons in general relativity and in some alternative theories of gravity. We consider the coupling between the gravitational theory and nonlinear electrodynamics. The c
In this work, we study the possibility of generalizing solutions of regular black holes with an electric charge, constructed in general relativity, for the $f(G)$ theory, where $G$ is the Gauss-Bonnet invariant. This type of solution arises due to th
We show that there is an inconsistency in the class of solutions obtained in Phys. Rev. D {bf 95}, 084037 (2017). This inconsistency is due to the approximate relation between lagrangian density and its derivative for Non-Linear Electrodynamics. We p
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
In this paper, we explore the interior dynamics of neutral and charged black holes in $f(R)$ gravity. We transform $f(R)$ gravity from the Jordan frame into the Einstein frame and simulate scalar collapses in flat, Schwarzschild, and Reissner-Nordstr