ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Generic rotating regular black holes in general relativity coupled to non-linear electrodynamics

161   0   0.0 ( 0 )
 نشر من قبل Manuel Rodrigues
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that there is an inconsistency in the class of solutions obtained in Phys. Rev. D {bf 95}, 084037 (2017). This inconsistency is due to the approximate relation between lagrangian density and its derivative for Non-Linear Electrodynamics. We present an algorithm to obtain new classes of solutions.

قيم البحث

اقرأ أيضاً

In this work, new solutions for regular black holes that have multihorizons are proposed. These are formed by the direct product of solutions already published in the literature, which are described through the coupling of gravity with nonlinear elec trodynamics. We analyze the regularity of the spacetime, the electric field, and the energy conditions of each solution. The strong energy condition is always violated within the event horizon in all solutions, while other energy conditions depend on the ratio between extreme charges of isolated solutions. For solutions with four horizons, we present two examples, Bardeen-Culetu and Balart-Culetu. Both solutions are regular, but the first do not satisfy all the energy conditions, except the strong, because it has an extreme charge ratio of 1.57581, great value. The second solution, on the other hand, can satisfy all other energy conditions, except the SEC, and has an extreme charge ratio of 1.09915, a value that allows this feature. Its also proposed a regular solution with up to six horizons, Balart-Culetu-Dymnikova, where, for a given charge value, we can verify that it satisfies all energy conditions, except the strong one. This was possible due to the ratio between extreme charges that are neither too high nor too close. We propose solutions with any number of horizons. We show that points where $-F(r)$ has a non null minimum represent a cusp in the Lagrangian $-L(F)$. We also show an example of multihorizon solution with magnetic charge. Multihorizon solutions may exhibit exotic properties, such as negative energy density, or violation of energy conditions, but which can be circumvented with a selected choice of customized solutions and extreme charge values, resulting in regular black hole solutions that satisfy all energy conditions, less the strong.
We obtain a class of regular black hole solutions in four-dimensional $f(R)$ gravity, $R$ being the curvature scalar, coupled to a nonlinear electromagnetic source. The metric formalism is used and static spherically symmetric spacetimes are assumed. The resulting $f(R)$ and nonlinear electrodynamics functions are characterized by a one-parameter family of solutions which are generalizations of known regular black holes in general relativity coupled to nonlinear electrodynamics. The related regular black holes of general relativity are recovered when the free parameter vanishes, in which case one has $f(R)propto R$. We analyze the regularity of the solutions and also show that there are particular solutions that violate only the strong energy condition
We investigate static and rotating charged spherically symmetric solutions in the framework of $f({cal R})$ gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromag netic Lagrangian, and using as an example the square-root $f({cal R})$ correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit and one that arises purely from the gravitational modification. The novel black hole solution has a true central singularity which is hidden behind a horizon, however for particular parameter regions it becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.
148 - Yoni BenTov , Joe Swearngin 2017
We present an exact solution of Einsteins equation that describes the gravitational shockwave of a massless particle on the horizon of a Kerr-Newman black hole. The backreacted metric is of the generalized Kerr-Schild form and is Type II in the Petro v classification. We show that if the background frame is aligned with shear-free null geodesics, and if the background Ricci tensor satisfies a simple condition, then all nonlinearities in the perturbation will drop out of the curvature scalars. We make heavy use of the method of spin coefficients (the Newman-Penrose formalism) in its compacted form (the Geroch-Held-Penrose formalism).
81 - Enrico Barausse 2019
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evol ution of black hole binary systems, providing a qualitative physical interpretation of each one of them. I will also briefly describe how these phases would be modified if gravitation were described by a theory extending or deforming General Relativity, or if the binary components turned out to be more exotic compact objects than black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا