ترغب بنشر مسار تعليمي؟ اضغط هنا

Etched graphene quantum dots on hexagonal boron nitride

324   0   0.0 ( 0 )
 نشر من قبل Stephan Engels
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. For graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN.



قيم البحث

اقرأ أيضاً

We report the fabrication details and low-temperature characteristics of the first carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor dep osition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.
198 - A. Epping , S. Engels , C. Volk 2013
We report on the fabrication and electrical characterisation of etched graphene single electron transistors (SETs) of various sizes on hexagonal boron nitride (hBN) in high magnetic fields. The electronic transport measurements show a slight improvem ent compared to graphene SETs on SiO2. In particular, SETs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T in contrast to measurements reported on SETs on SiO2. This result indicates a reduced surface disorder potential in SETs on hBN which might be an important step towards clean and more controllable graphene QDs.
When a crystal is subjected to a periodic potential, under certain circumstances (such as when the period of the potential is close to the crystal periodicity; the potential is strong enough, etc.) it might adjust itself to follow the periodicity of the potential, resulting in a, so called, commensurate state. Such commensurate-incommensurate transitions are ubiquitous phenomena in many areas of condensed matter physics: from magnetism and dislocations in crystals, to vortices in superconductors, and atomic layers adsorbed on a crystalline surface. Of particular interest might be the properties of topological defects between the two commensurate phases: solitons, domain walls, and dislocation walls. Here we report a commensurate-incommensurate transition for graphene on top of hexagonal boron nitride (hBN). Depending on the rotational angle between the two hexagonal lattices, graphene can either stretch to adjust to a slightly different hBN periodicity (the commensurate state found for small rotational angles) or exhibit little adjustment (the incommensurate state). In the commensurate state, areas with matching lattice constants are separated by domain walls that accumulate the resulting strain. Such soliton-like objects present significant fundamental interest, and their presence might explain recent observations when the electronic, optical, Raman and other properties of graphene-hBN heterostructures have been notably altered.
153 - S. Dai , Q. Ma , M. K. Liu 2015
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, for which the dielectric constants are the same in the basal plane (epsilon^t = epsilon^x = epsilon^y) but have opposite signs (epsilon^t*epsilon^z < 0) from that in the normal plane (e psilon^z). Due to this property, finite-thickness slabs of h-BN act as multimode waveguides for propagation of hyperbolic phonon polaritons - collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show by direct nano-infrared imaging that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. Remarkably, the hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN structures can be classified as electromagnetic metamaterials since the resulting properties of these devices are not present in its constituent elements alone.
Chemically synthesized cove-type graphene nanoribbons (cGNRs) of different widths were brought into dispersion and drop-cast onto exfoliated hexagonal boron nitride (hBN) on a Si/SiO2 chip. With AFM we observed that the cGNRs form ordered domains ali gned along the crystallographic axes of the hBN. Using electron beam lithography and metallization, we contacted the cGNRs with NiCr/Au, or Pd contacts and measured their I-V-characteristics. The transport through the ribbons was dominated by the Schottky behavior of the contacts between the metal and the ribbon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا