ترغب بنشر مسار تعليمي؟ اضغط هنا

Feynman integral in $mathbb R^1oplusmathbb R^m$ and complex expansion of $_2F_1$

71   0   0.0 ( 0 )
 نشر من قبل Mykola Shpot Dr.
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Closed form expressions are proposed for the Feynman integral $$ I_{D, m}(p,q) = intfrac{d^my}{(2pi)^m}intfrac{d^Dx}{(2pi)^D} frac1{(x-p/2)^2+(y-q/2)^4} frac1{(x+p/2)^2+(y+q/2)^4} $$ over $d=D+m$ dimensional space with $(x,y),,(p,q)in mathbb R^D oplus mathbb R^m$, in the special case $D=1$. We show that $I_{1,m}(p,q)$ can be expressed in different forms involving real and imaginary parts of the complex variable Gauss hypergeometric function $_2F_1$, as well as generalized hypergeometric $_2F_2$ and $_3F_2$, Horn $H_4$ and Appell $F_2$ functions. Several interesting relations are derived between the real and imaginary parts of $_2F_1$ and the function $H_4$.

قيم البحث

اقرأ أيضاً

We show that, if $bin L^1(0,T;L^1_{mathrm{loc}}(mathbb{R}))$ has spatial derivative in the John-Nirenberg space $mathrm{BMO}(mathbb{R})$, then it generalizes a unique flow $phi(t,cdot)$ which has an $A_infty(mathbb R)$ density for each time $tin [0,T ]$. Our condition on the map $b$ is optimal and we also get a sharp quantitative estimate for the density. As a natural application we establish a well-posedness for the Cauchy problem of the transport equation in $mathrm{BMO}(mathbb R)$.
In this paper, we prove $L^p$ decay estimates for multilinear oscillatory integrals in $mathbb{R}^2$, establishing sharpness through a scaling argument. The result in this paper is a generalization of the previous work by Gressman and Xiao (2016).
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
Wild sets in $mathbb{R}^n$ can be tamed through the use of various representations though sometimes this taming removes features considered important. Finding the wildest sets for which it is still true that the representations faithfully inform us a bout the original set is the focus of this rather playful, expository paper that we hope will stimulate interest in cubical coverings as well as the other two ideas we explore briefly: Jones $beta$ numbers and varifolds from geometric measure theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا