ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonnegative $C^2(mathbb{R}^2)$ interpolation

147   0   0.0 ( 0 )
 نشر من قبل Fushuai Jiang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we prove two improv



قيم البحث

اقرأ أيضاً

Let $ E subset mathbb{R}^2 $ be a finite set, and let $ f : E to [0,infty) $. In this paper, we address the algorithmic aspects of nonnegative $C^2$ interpolation in the plane. Specifically, we provide an efficient algorithm to compute a nonnegative $C^2(mathbb{R}^2)$ extension of $ f $ with norm within a universal constant factor of the least possible. We also provide an efficient algorithm to approximate the trace norm.
391 - Fushuai Jiang 2019
Let $ f $ be a real-valued function on a compact subset in $ mathbb{R}^n $. We show how to decide if $ f $ extends to a nonnegative and $ C^1 $ function on $ mathbb{R}^n $. There has been no known result for nonnegative $ C^m $ extension from a gener al compact set $ E $ when $ m > 0 $. The nonnegative extension problem for $ m geq 2 $ remains open.
Given $ -infty< lambda < Lambda < infty $, $ E subset mathbb{R}^n $ finite, and $ f : E to [lambda,Lambda] $, how can we extend $ f $ to a $ C^m(mathbb{R}^n) $ function $ F $ such that $ lambdaleq F leq Lambda $ and $ ||F||_{C^m(mathbb{R}^n)} $ is wi thin a constant multiple of the least possible, with the constant depending only on $ m $ and $ n $? In this paper, we provide the solution to the problem for the case $ m = 2 $. Specifically, we construct a (parameter-dependent, nonlinear) $ C^2(mathbb{R}^n) $ extension operator that preserves the range $[lambda,Lambda]$, and we provide an efficient algorithm to compute such an extension using $ O(Nlog N) $ operations, where $ N = #(E) $.
This paper is devoted to $L^2$ estimates for trilinear oscillatory integrals of convolution type on $mathbb{R}^2$. The phases in the oscillatory factors include smooth functions and polynomials. We shall establish sharp $L^2$ decay estimates of trili near oscillatory integrals with smooth phases, and then give $L^2$ uniform estimates for these integrals with polynomial phases.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا