ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal summation in a neuromimetic micropillar laser

151   0   0.0 ( 0 )
 نشر من قبل Sylvain Barbay
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F Selmi




اسأل ChatGPT حول البحث

Neuromimetic systems are systems mimicking the functionalities orarchitecture of biological neurons and may present an alternativepath for efficient computing and information processing. We demonstratehere experimentally temporal summation in a neuromimetic micropillarlaser with integrated saturable absorber. Temporal summation is theproperty of neurons to integrate delayed input stimuli and to respondby an all-or-none kind of response if the inputs arrive in a sufficientlysmall time window. Our system alone may act as a fast optical coincidence detector and paves the way to fast photonic spike processing networks.



قيم البحث

اقرأ أيضاً

We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the transition to optical wave turbulence in a fibre laser. Ordinal analysis and the horizontal visibility graph applied to the experimentally measu red laser output intensity reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent structures with well defined time-scales and strong correlations both, in the timing of the laser pulses and in their peak intensities. Our approach is generic and may be used in other complex systems that undergo similar transitions involving the generation of extreme fluctuations.
We present a detailed experimental characterization of the spectral and spatial structure of the confined optical modes for oxide-apertured micropillar cavities, showing good-quality Hermite-Gaussian profiles, easily mode-matched to external fields. We further derive a relation between the frequency splitting of the transverse modes and the expected Purcell factor. Finally, we describe a technique to retrieve the profile of the confining refractive index distribution from the spatial profiles of the modes.
We report an original method allowing to recover the temporal profile of any kind of soft X-ray laser pulse in single-shot operation. We irradiated a soft X-ray multilayer mirror with an intense infrared femtosecond laser pulse in a traveling wave ge ometry and took advantage of the sudden reflectivity drop of the mirror to reconstruct the temporal profile of the soft X-ray pulse. We inferred a pulse shape with a duration of a few ps in good agreement with numerical calculations and experimental work.
We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics when the quantum dot is tuned into resonance with the cavity leading to a non-exponential decay in time. Excellent agreement between experiment and theory is observed with no free parameters providing the first quantitative description of an all-solid-state cavity QED system based on quantum dot emitters.
We theoretically describe the quantum Zeno effect in a spin-photon interface represented by a charged quantum dot in a micropillar cavity. The electron spin in this system entangles with the polarization of the transmitted photons, and their continuo us detection leads to the slowing of the electron spin precession in external magnetic field and induces the spin relaxation. We obtain a microscopic expression for the spin measurement rate and calculate the second and fourth order correlation functions of the spin noise, which evidence the change of the spin statistics due to the quantum Zeno effect. We demonstrate, that the quantum limit for the spin measurement can be reached for any probe frequency using the homodyne nondemolition spin measurement, which maximizes the rate of the quantum information gain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا