ﻻ يوجد ملخص باللغة العربية
We theoretically describe the quantum Zeno effect in a spin-photon interface represented by a charged quantum dot in a micropillar cavity. The electron spin in this system entangles with the polarization of the transmitted photons, and their continuous detection leads to the slowing of the electron spin precession in external magnetic field and induces the spin relaxation. We obtain a microscopic expression for the spin measurement rate and calculate the second and fourth order correlation functions of the spin noise, which evidence the change of the spin statistics due to the quantum Zeno effect. We demonstrate, that the quantum limit for the spin measurement can be reached for any probe frequency using the homodyne nondemolition spin measurement, which maximizes the rate of the quantum information gain.
We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit
We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied
Quantum dots in cavities have been shown to be very bright sources of indistinguishable single photons. Yet the quantum interference between two bright quantum dot sources, a critical step for photon based quantum computation, has never been investig
We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic s-
The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies $ u$ of the order or higher than the frequency associated with the Kondo effect $k_B T_K/h$, with $T_K$ the Kondo temperature. The carbon nanot