ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability in a Young, L/T Transition Planetary-Mass Object

62   0   0.0 ( 0 )
 نشر من قبل Beth Biller
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As part of our ongoing NTT SoFI survey for variability in young free-floating planets and low mass brown dwarfs, we detect significant variability in the young, free-floating planetary mass object PSO J318.5-22, likely due to rotational modulation of inhomogeneous cloud cover. A member of the 23$pm$3 Myr $beta$ Pic moving group, PSO J318.5-22 has T$_mathrm{eff}$ = 1160$^{+30}_{-40}$ K and a mass estimate of 8.3$pm$0.5 M$_{Jup}$ for a 23$pm$3 Myr age. PSO J318.5-22 is intermediate in mass between 51 Eri b and $beta$ Pic b, the two known exoplanet companions in the $beta$ Pic moving group. With variability amplitudes from 7-10$%$ in J$_{S}$ at two separate epochs over 3-5 hour observations, we constrain the rotational period of this object to $>$5 hours. In K$_{S}$, we marginally detect a variability trend of up to 3$%$ over a 3 hour observation. This is the first detection of weather on an extrasolar planetary mass object. Among L dwarfs surveyed at high-photometric precision ($<$3$%$) this is the highest amplitude variability detection. Given the low surface gravity of this object, the high amplitude preliminarily suggests that such objects may be more variable than their high mass counterparts, although observations of a larger sample is necessary to confirm this. Measuring similar variability for directly imaged planetary companions is possible with instruments such as SPHERE and GPI and will provide important constraints on formation. Measuring variability at multiple wavelengths can help constrain cloud structure.

قيم البحث

اقرأ أيضاً

122 - Marie-Eve Naud 2017
We present a photometric $J$-band variability study of GU Psc b, a T3.5 co-moving planetary-mass companion (9-13$M_{rm{Jup}}$) to a young ($sim$150 Myr) M3 member of the AB Doradus Moving Group. The large separation between GU Psc b and its host star (42) provides a rare opportunity to study the photometric variability of a planetary-mass companion. The study presented here is based on observations obtained from 2013 to 2014 over three nights with durations of 5-6 hr each with the WIRCam imager at Canada-France-Hawaii Telescope. Photometric variability with a peak-to-peak amplitude of $4pm1$% at a timescale of $sim$6 hr was marginally detected on 2014 October 11. No high-significance variability was detected on 2013 December 22 and 2014 October 10. The amplitude and timescale of the variability seen here, as well as its evolving nature, is comparable to what was observed for a variety of field T dwarfs and suggests that mechanisms invoked to explain brown dwarf variability may be applicable to low-gravity objects such as GU Psc b. Rotation-induced photometric variability due to the formation and dissipation of atmospheric features such as clouds is a plausible hypothesis for the tentative variation detected here. Additional photometric measurements, particularly on longer timescales, will be required to confirm and characterize the variability of GU Psc b, determine its periodicity and to potentially measure its rotation period.
The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census , we have searched $approx$28,000 deg$^2$ using the Pan-STARRS1 and WISE surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances $approx9-130$ pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6-T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9-T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the L/T gap, a deficit of objects with $(J-K)_{rm MKO}approx0.0-0.5$ mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7-T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members and would help to determine the effective temperature at which young brown dwarfs cross the L/T transition. (Abridged)
We present simultaneous HST WFC3 + Spitzer IRAC variability monitoring for the highly-variable young ($sim$20 Myr) planetary-mass object PSO J318.5-22. Our simultaneous HST + Spitzer observations covered $sim$2 rotation periods with Spitzer and most of a rotation period with HST. We derive a period of 8.6$pm$0.1 hours from the Spitzer lightcurve. Combining this period with the measured $v sin i$ for this object, we find an inclination of 56.2$pm 8.1^{circ}$. We measure peak-to-trough variability amplitudes of 3.4$pm$0.1$%$ for Spitzer Channel 2 and 4.4 - 5.8$%$ (typical 68$%$ confidence errors of $sim$0.3$%$) in the near-IR bands (1.07-1.67 $mu$m) covered by the WFC3 G141 prism -- the mid-IR variability amplitude for PSO J318.5-22 one of the highest variability amplitudes measured in the mid-IR for any brown dwarf or planetary mass object. Additionally, we detect phase offsets ranging from 200--210$^{circ}$ (typical error of $sim$4$^{circ}$) between synthesized near-IR lightcurves and the Spitzer mid-IR lightcurve, likely indicating depth-dependent longitudinal atmospheric structure in this atmosphere. The detection of similar variability amplitudes in wide spectral bands relative to absorption features suggests that the driver of the variability may be inhomogeneous clouds (perhaps a patchy haze layer over thick clouds), as opposed to hot spots or compositional inhomogeneities at the top-of-atmosphere level.
Gas-giant planets emit a large fraction of their light in the mid-infrared ($gtrsim$3$mu$m), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L and M-ba nd atmospheric windows (3-5$mu$m), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT AO images of the HR 8799 planetary system in six narrow-band filters from 3-4$mu$m, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3$mu$m band. These systems encompass the five known exoplanets with luminosities consistent with L$rightarrow$T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrowband filters and encompassed by the broader 3.3$mu$m filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the objects appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta ined Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا