ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for L/T Transition Dwarfs With Pan-STARRS1 and WISE. II. L/T Transition Atmospheres and Young Discoveries

84   0   0.0 ( 0 )
 نشر من قبل William Best
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched $approx$28,000 deg$^2$ using the Pan-STARRS1 and WISE surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances $approx9-130$ pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6-T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9-T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the L/T gap, a deficit of objects with $(J-K)_{rm MKO}approx0.0-0.5$ mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7-T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members and would help to determine the effective temperature at which young brown dwarfs cross the L/T transition. (Abridged)

قيم البحث

اقرأ أيضاً

We present the discovery of eight young M7-L2 dwarfs in the Taurus star-forming region and the Scorpius-Centaurus OB Association, serendipitously found during a wide-field search for L/T transition dwarfs using Pan-STARRS1 (optical) and WISE (mid-inf rared) photometry. We identify PSO J060.3200+25.9644 (near-infrared spectral type L1) and PSO J077.1033+24.3809 (L2) as new members of Taurus based on their VL-G gravity classifications, the consistency of their photometry and proper motions with previously known Taurus objects, and the low probability of contamination by field objects. PSO J077.1033+24.3809 is the coolest substellar member of Taurus found to date. Both Taurus objects are among the lowest mass free-floating objects ever discovered, with estimated masses $approx$6 M$_{rm Jup}$, and provide further evidence that isolated planetary-mass objects can form as part of normal star-formation processes. PSO J060.3200+25.9644 (a.k.a. DANCe J040116.80+255752.2) was previously identified as a likely member of the Pleiades (age $approx125$ Myr) based on photometry and astrometry, but its VL-G gravity classification and near-infrared photometry imply a much younger age and thus point to Taurus membership. We have also discovered six M7-L1 dwarfs in outlying regions of Scorpius-Centaurus with photometry, proper motions, and low-gravity spectral signatures consistent with membership. These objects have estimated masses $approx$15-36 M$_{rm Jup}$. The M7 dwarf, PSO J237.1470-23.1489, shows excess mid-infrared flux implying the presence of a circumstellar disk. Finally, we present catalogs of Pan-STARRS1 proper motions for low-mass members of Taurus and Upper Scorpius with median precisions of $approx$3 mas yr$^{-1}$, including 67 objects with no previous proper motion and 359 measurements that improve on literature values.
We have searched ~8200 sq. degs for high proper motion (~0.5-2.7/year) T dwarfs by combining first-epoch data from the Pan-STARRS1 (PS1) 3-Pi Survey, the 2MASS All-Sky Point Source Catalog, and the WISE Preliminary Data Release. We identified two hig h proper motion objects with the very red (W1-W2) colors characteristic of T dwarfs, one being the known T7.5 dwarf GJ 570D. Near-IR spectroscopy of the other object (PSO J043.5+02 = WISEP J0254+0223) reveals a spectral type of T8, leading to a photometric distance of 7.2+/-0.7 pc. The 2.56/yr proper motion of PSO J043.5+02 is the second highest among field T dwarfs, corresponding to an tangential velocity of 87+/-8 km/s. According to the Besancon galaxy model, this velocity indicates its galactic membership is probably in the thin disk, with the thick disk an unlikely possibility. Such membership is in accord with the near-IR spectrum, which points to a surface gravity (age) and metallicity typical of the field population. We combine 2MASS, SDSS, WISE, and PS1 astrometry to derive a preliminary parallax of 171+/-45 mas (5.8{+2.0}{-1.2} pc), the first such measurement using PS1 data. The proximity and brightness of PSO J043+02 will facilitate future characterization of its atmosphere, variability, multiplicity, distance, and kinematics. The modest number of candidates from our search suggests that the immediate (~10 pc) solar neighborhood does not contain a large reservoir of undiscovered T dwarfs earlier than about T8.
We present a catalog of 9888 M, L and T dwarfs detected in the Pan-STARRS1 3$pi$ Survey (PS1), covering three-quarters of the sky. Our catalog contains nearly all known objects of spectral types L0-T2 in the PS1 field, with objects as early as M0 and as late as T9, and includes PS1, 2MASS, AllWISE, and Gaia DR1 photometry. We analyze the different types of photometry reported by PS1, and use two types in our catalog to maximize both depth and accuracy. Using parallaxes from the literature, we construct empirical SEDs for field ultracool dwarfs spanning 0.5-12 $mu$m. We determine typical colors of M0-T9 dwarfs, and we highlight the distinctive colors of subdwarfs and young objects. Our catalog includes 492 L dwarfs detected in $r_{rm P1}$, the largest sample of L dwarfs detected at such blue wavelengths. We combine astrometry from PS1, 2MASS, and Gaia DR1 to calculate new proper motions for our catalog. We achieve a median precision of 2.9 mas yr$^{-1}$, a factor of $approx$3-10 improvement over previous large catalogs. Our catalog contains proper motions for 2405 M6-T9 dwarfs and includes the largest set of homogeneous proper motions for L and T dwarfs published to date, 406 objects for which there were no previous measurements, and 1176 objects for which we improve upon previous literature values. We analyze the kinematics of ultracool dwarfs in our catalog and find evidence that bluer but otherwise generic late-M and L field dwarfs (i.e., not subdwarfs) tend to have higher tangential velocities compared to typical field objects. With the public release of the PS1 data, this survey will continue to be an essential tool for characterizing the ultracool dwarf population.
We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey (2MASS). WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85+/-0.02 yr^-1, previously overlooked due to its proximity to a bright star (V=12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7+/-1.7 pc, bringing the number of L dwarfs at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered (Castro & Gizis 2012) fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH_4 in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH_4 in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.
As part of our ongoing NTT SoFI survey for variability in young free-floating planets and low mass brown dwarfs, we detect significant variability in the young, free-floating planetary mass object PSO J318.5-22, likely due to rotational modulation of inhomogeneous cloud cover. A member of the 23$pm$3 Myr $beta$ Pic moving group, PSO J318.5-22 has T$_mathrm{eff}$ = 1160$^{+30}_{-40}$ K and a mass estimate of 8.3$pm$0.5 M$_{Jup}$ for a 23$pm$3 Myr age. PSO J318.5-22 is intermediate in mass between 51 Eri b and $beta$ Pic b, the two known exoplanet companions in the $beta$ Pic moving group. With variability amplitudes from 7-10$%$ in J$_{S}$ at two separate epochs over 3-5 hour observations, we constrain the rotational period of this object to $>$5 hours. In K$_{S}$, we marginally detect a variability trend of up to 3$%$ over a 3 hour observation. This is the first detection of weather on an extrasolar planetary mass object. Among L dwarfs surveyed at high-photometric precision ($<$3$%$) this is the highest amplitude variability detection. Given the low surface gravity of this object, the high amplitude preliminarily suggests that such objects may be more variable than their high mass counterparts, although observations of a larger sample is necessary to confirm this. Measuring similar variability for directly imaged planetary companions is possible with instruments such as SPHERE and GPI and will provide important constraints on formation. Measuring variability at multiple wavelengths can help constrain cloud structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا