ترغب بنشر مسار تعليمي؟ اضغط هنا

Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO$_3$/SrTiO$_3$ Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

134   0   0.0 ( 0 )
 نشر من قبل Gunnar Palsson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LaNiO$_3$ (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO$_3$ (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d eg and t2g states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrTiO$_3$ superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our conclusions are also supported in several ways by comparison to DFT calculations for the parent materials and the superlattice, including layer-resolved density-of-states results.



قيم البحث

اقرأ أيضاً

Hybrid multiferroics such as BiFeO$_3$ (BFO) and La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) heterostructures are highly interesting functional systems due to their complex electronic and magnetic properties. One of the key parameters influencing the emergent properties is the quality of interfaces, where varying interdiffusion lengths can give rise to different chemistry and distinctive electronic states. Here we report high-resolution depth resolved chemical and electronic investigation of BFO/LSMO superlattice using standing-wave hard X-ray photoemission spectroscopy in the first-order Bragg as well as near-total-reflection geometry. Our results show that the interfaces of BFO on top of LSMO are atomically abrupt, while the LSMO on top of BFO interfaces show an interdiffusion length of around 1.2 unit cells. The two interfaces also exhibit different chemical gradients, with the BFO/LSMO interface being Sr-terminated by a spectroscopically distinctive high binding energy component in Sr 2p core-level spectra, which is spatially contained within 1 unit cell from the interface. From the electronic point of view, unique valence band features were observed for bulk-BFO, bulk-LSMO and their interfaces. Our X-ray optical analysis revealed a unique electronic signature at the BFO/LSMO interface, which we attribute to the coupling between those respective layers. Valence band decomposition based on the Bragg-reflection standing-wave measurement also revealed the band alignment between BFO and LSMO layers. Our work demonstrates that standing-wave hard x-ray photoemission is a reliable non-destructive technique for probing depth-resolved electronic structure of buried layers and interfaces with sub-unit-cell resolution. Equivalent investigations can be successfully applied to a broad class of material such as perovskite complex oxides with emergent interfacial phenomena.
148 - M. Stubinger 2021
The heterostructure consisting of the Mott insulator LaVO$_3$ and the band insulator SrTiO$_3$ is considered a promising candidate for future photovoltaic applications. Not only does the (direct) excitation gap of LaVO$_3$ match well the solar spectr um, but its correlated nature and predicted built-in potential, owing to the non-polar/polar interface when integrated with SrTiO$_3$, also offer remarkable advantages over conventional solar cells. However, experimental data beyond the observation of a thickness-dependent metal-insulator transition is scarce and a profound, microscopic understanding of the electronic properties is still lacking. By means of soft and hard X-ray photoemission spectroscopy as well as resistivity and Hall effect measurements we study the electrical properties, band bending, and band alignment of LaVO$_3$/SrTiO$_3$ heterostructures. We find a critical LaVO$_3$ thickness of five unit cells, confinement of the conducting electrons to exclusively Ti 3$d$ states at the interface, and a potential gradient in the film. From these findings we conclude on electronic reconstruction as the driving mechanism for the formation of the metallic interface in LaVO$_3$/SrTiO$_3$.
We have performed soft-X-ray angle resolved photoemission for metallic V$_2$O$_3$. Combining a micro focus beam (40 x 65 ${mu}$m$^2$) and micro positioning techniques with a long working distance microscope, we have succeeded in observing band disper sions from tiny cleavage surfaces with typical size of the several tens of ${mu}$m. The photoemission spectra show a clear position dependence reflecting the morphology of the cleaved sample surface. By selecting high quality flat regions on the sample surface, we have succeeded in band mapping using both photon-energy and polar-angle dependences, opening the door to three-dimensional ARPES for typical three dimensional correlated materials where large cleavage planes are rarely obtained.
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction of Ti 3d and O $2p$ states at the interface. From reflectivity analyses, we concluded that the AlO$_2$/LaO/TiO$_2$/SrO and the TiO$_2$/SrO/AlO$_2$/LaO interfaces are quite different, leading to highly asymmetric properties.
387 - K. Yamagami , K. Ikeda , A. Hariki 2021
The strain effect from a substrate is an important experimental route to control electronic and magnetic properties in transition-metal oxide (TMO) thin films. Using hard x-ray photoemission spectroscopy, we investigate the strain dependence of the v alence states in LaNiO$_{3}$ thin films, strongly correlated perovskite TMO, grown on four substrates: LaAlO$_{3}$, (LaAlO$_{3}$)$_{0.3}$(SrAl$_{0.5}$Ta$_{0.5}$O$_{3}$)$_{0.7}$, SrTiO$_{3}$, and DyScO$_{3}$. A Madelung potential analysis of core-level spectra suggests that the point-charge description is valid for the La ions while it breaks down for Ni and O ions due to a strong covalent bonding between the two. A clear x-ray photon-energy dependence of the valence spectra is analyzed by the density functional theory, which points to a presence of the La 5$p$ state near the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا