ﻻ يوجد ملخص باللغة العربية
The heterostructure consisting of the Mott insulator LaVO$_3$ and the band insulator SrTiO$_3$ is considered a promising candidate for future photovoltaic applications. Not only does the (direct) excitation gap of LaVO$_3$ match well the solar spectrum, but its correlated nature and predicted built-in potential, owing to the non-polar/polar interface when integrated with SrTiO$_3$, also offer remarkable advantages over conventional solar cells. However, experimental data beyond the observation of a thickness-dependent metal-insulator transition is scarce and a profound, microscopic understanding of the electronic properties is still lacking. By means of soft and hard X-ray photoemission spectroscopy as well as resistivity and Hall effect measurements we study the electrical properties, band bending, and band alignment of LaVO$_3$/SrTiO$_3$ heterostructures. We find a critical LaVO$_3$ thickness of five unit cells, confinement of the conducting electrons to exclusively Ti 3$d$ states at the interface, and a potential gradient in the film. From these findings we conclude on electronic reconstruction as the driving mechanism for the formation of the metallic interface in LaVO$_3$/SrTiO$_3$.
Effects of X-ray irradiation on the electronic structure of LaAlO$_3$/SrTiO$_3$ (LAO/STO) samples, grown at low oxygen pressure and post-annealed ex-situ till recovery of their stoichiometry, were investigated by soft-X-ray ARPES. The irradiation at
We measure the surface of CH$_3$NH$_3$PbI$_3$ single crystals by making use of two photon photoemission spectroscopy. Our method monitors the electronic distribution of photoexcited electrons, explicitly discriminating the initial thermalization from
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic p
Thin film synthesis methods developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited unde
At interfaces between oxide materials, lattice and electronic reconstructions always play important roles in exotic phenomena. In this study, the density functional theory and maximally localized Wannier functions are employed to investigate the (LaT