ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft X-ray Angle Resolved Photoemission with Micro Positioning Techniques for Metallic V$_2$O$_3$

125   0   0.0 ( 0 )
 نشر من قبل Hidenori Fujiwara
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed soft-X-ray angle resolved photoemission for metallic V$_2$O$_3$. Combining a micro focus beam (40 x 65 ${mu}$m$^2$) and micro positioning techniques with a long working distance microscope, we have succeeded in observing band dispersions from tiny cleavage surfaces with typical size of the several tens of ${mu}$m. The photoemission spectra show a clear position dependence reflecting the morphology of the cleaved sample surface. By selecting high quality flat regions on the sample surface, we have succeeded in band mapping using both photon-energy and polar-angle dependences, opening the door to three-dimensional ARPES for typical three dimensional correlated materials where large cleavage planes are rarely obtained.



قيم البحث

اقرأ أيضاً

Using angle resolved photoemission spectroscopy (ARPES) we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V$_2$O$_3$. A long the $c$-axis we observe both an electron pocket and a triangular hole-like FS topology, showing that both V 3$d$ $a_{1g}$ and $e_g^{pi}$ states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.
We report a combined study for the electronic structures of ferromagnetic CeAgSb$_2$ using soft X-ray absorption (XAS), magnetic circular dichroism (XMCD), and angle-resolved photoemission (ARPES) spectroscopies. The Ce $M_{4, 5}$ XAS spectra show ve ry small satellite structures, reflecting a strongly localized character of the Ce $4f$ electrons. The linear dichroism effects in the Ce $M_{4, 5}$ XAS spectra demonstrate the ground state Ce $4f$ symmetry of $Gamma{_6}$, the spatial distribution of which is directed along the $c$-axis. The XMCD results give support to the picture of local-moment magnetism in CeAgSb$_2$. Moreover it is also found that the theoretical band dispersions for LaAgSb$_2$ provides better description of the ARPES band structures than those for CeAgSb$_2$. Nevertheless, ARPES spectra at the Ce $3d$-$4f$ resonance show the momentum dependence for the intensity ratio between Ce $4f^{1}_{5/2}$ and $4f^{1}_{7/2}$ peaks in a part of the Brillouin zone, suggesting the non-negligible momentum dependent hybridization effect between the Ce $4f$ and the conduction electrons. This is associated with the moderate mass enhancement in CeAgSb$_2$.
We report on experimental data of the three-dimensional bulk Fermi surfaces of the layered strongly correlated Ca1.5Sr0.5RuO4 system. The measurements have been performed by means of hn-depndent bulk-sensitive soft x-ray angle-resolved photoemission technique. Our experimental data evinces the bulk Fermi surface topology at kz~0 to be qualitatively different from the one observed by surface-sensitive low-energy ARPES. Furthermore, stronger kz dispersion of the circle-like gamma Fermi surface sheet is observed compared with Sr2RuO4. Thus in the paramagnetic metal phase, Ca1.5Sr0.5RuO4 compound is found to have rather three-dimensional electronic structure.
LaNiO$_3$ (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO$_3$ (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d eg and t2g states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrTiO$_3$ superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our conclusions are also supported in several ways by comparison to DFT calculations for the parent materials and the superlattice, including layer-resolved density-of-states results.
We have developed the numerical software package $chinook$, designed for the simulation of photoemission matrix elements. This quantity encodes a depth of information regarding the orbital structure of the underlying wavefunctions from which photoemi ssion occurs. Extraction of this information is often nontrivial, owing to the influence of the experimental geometry and photoelectron interference, precluding straightforward solutions. The $chinook$ code has been designed to simulate and predict the ARPES intensity measured for arbitrary experimental configuration, including photon-energy, polarization and spin-projection, as well as consideration of both surface-projected slab and bulk models. This framework then facilitates an efficient interpretation of the photoemission experiment, allowing for a deeper understanding of the electronic structure in addition to the design of new experiments which leverage the matrix element effects towards the objective of selective photoemission from states of particular interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا