ترغب بنشر مسار تعليمي؟ اضغط هنا

TOI-677 b: A Warm Jupiter (P=11.2d) on an eccentric orbit transiting a late F-type star

76   0   0.0 ( 0 )
 نشر من قبل Andres Jordan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of TOI-677 b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677 b has a mass of M_p = 1.236$^{+0.069}_{-0.067}$ M_J, a radius of R_p = 1.170 +- 0.03 R_J,and orbits its bright host star (V=9.8 mag) with an orbital period of 11.23660 +- 0.00011 d, on an eccentric orbit with e = 0.435 +- 0.024. The host star has a mass of M_* = 1.181 +- 0.058 M_sun, a radius of R_* = 1.28 +- 0.03 R_sun, an age of 2.92$^{+0.80}_{-0.73}$ Gyr and solar metallicity, properties consistent with a main sequence late F star with T_eff = 6295 +- 77 K. We find evidence in the radial velocity measurements of a secondary long term signal which could be due to an outer companion. The TOI-677 b system is a well suited target for Rossiter-Mclaughlin observations that can constrain migration mechanisms of close-in giant planets.



قيم البحث

اقرأ أيضاً

We study the Kepler object Kepler-432, an evolved star ascending the red giant branch. By deriving precise radial velocities from multi-epoch high-resolution spectra of Kepler-432 taken with the CAFE spectrograph at the 2.2m telescope of Calar Alto O bservatory and the FIES spectrograph at the Nordic Optical Telescope of Roque de Los Muchachos Observatory, we confirm the planetary nature of the object Kepler-432 b, which has a transit period of 52 days. We find a planetary mass of Mp=5.84 +- 0.05 Mjup and a high eccentricity of e=0.478 +- 0.004. With a semi-major axis of a=0.303 +- 0.007 AU, Kepler-432 b is the first bona fide warm Jupiter detected to transit a giant star. We also find a radial velocity linear trend of 0.44 +- 0.04 m s$^{-1}$ d$^{-1}$, which suggests the presence of a third object in the system. Current models of planetary evolution in the post-main-sequence phase predict that Kepler-432 b will be most likely engulfed by its host star before the latter reaches the tip of the red giant branch.
We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASAs Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observ ations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of $M_P=0.138pm0.023$,$rm{M_J}$ ($43.9pm7.3$,$M_{rm oplus}$), a radius of $R_P=0.639pm0.013$,$rm{R_J}$ ($7.16pm0.15$,$R_{rm oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$,$rm{days}$. TOI-257b orbits a bright ($mathrm{V}=7.612$,mag) somewhat evolved late F-type star with $M_*=1.390pm0.046$,$rm{M_{odot}}$, $R_*=1.888pm0.033$,$rm{R_{odot}}$, $T_{rm eff}=6075pm90$,$rm{K}$, and $vsin{i}=11.3pm0.5$,km,s$^{-1}$. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a $sim71$,day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars ($sim100$) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
We report the discovery of HAT-P-30b, a transiting exoplanet orbiting the V=10.419 dwarf star GSC 0208-00722. The planet has a period P=2.810595+/-0.000005 d, transit epoch Tc = 2455456.46561+/-0.00037 (BJD), and transit duration 0.0887+/-0.0015 d. T he host star has a mass of 1.24+/-0.04 Msun, radius of 1.21+/-0.05 Rsun, effective temperature 6304+/-88 K, and metallicity [Fe/H] = +0.13+/-0.08. The planetary companion has a mass of 0.711+/-0.028 Mjup, and radius of 1.340+/-0.065 Rjup yielding a mean density of 0.37+/-0.05 g cm^-3. We also present radial velocity measurements that were obtained throughout a transit that exhibit the Rossiter-McLaughlin effect. By modeling this effect we measure an angle of lambda = 73.5+/-9.0 deg between the sky projections of the planets orbit normal and the stars spin axis. HAT-P-30b represents another example of a close-in planet on a highly tilted orbit, and conforms to the previously noted pattern that tilted orbits are more common around stars with Teff > 6250 K.
150 - G. A. Bakos 2009
We report on the discovery of a planetary system with a close-in transiting hot Jupiter on a near circular orbit and a massive outer planet on a highly eccentric orbit. The inner planet, HAT-P-13b, transits the bright V=10.622 G4 dwarf star GSC 3416- 00543 every P = 2.916260 pm 0.000010 days, with transit epoch Tc = 2454779.92979 pm 0.00038 (BJD) and duration 0.1345 pm 0.0017 d. The outer planet, HAT-P-13c orbits the star with P2 = 428.5 pm 3.0 days and nominal transit center (assuming zero impact parameter) of T2c = 2454870.4 pm 1.8 (BJD) or time of periastron passage T2,peri= 2454890.05 pm 0.48 (BJD). Transits of the outer planet have not been observed, and may not be present. The host star has a mass of 1.22 pm ^0.05_0.10 Msun, radius of 1.56 pm 0.08 Rsun, effective temperature 5653 pm 90 K, and is rather metal rich with [Fe=H] = +0.41 pm 0.08. The inner planetary companion has a mass of 0.853pm ^0.029_-0.046MJup, and radius of 1.281 pm 0.079 RJup yielding a mean density of 0.498pm +0.103_-0.069 gcm^-3. The outer companion has m2 sini2 = 15.2 pm 1.0 MJup, and orbits on a highly eccentric orbit of e2 = 0.691 pm 0.018. While we have not detected significant transit timing variations of HAT-P-13b, due to gravitational and light-travel time effects, future observations will constrain the orbital inclination of HAT-P-13c, along with its mutual inclination to HAT-P-13b. The HAT-P-13 (b,c) double-planet system may prove extremely valuable for theoretical studies of the formation and dynamics of planetary systems.
We report the discovery of HAT-P-16b, a transiting extrasolar planet orbiting the V = 10.8 mag F8 dwarf GSC 2792-01700, with a period P = 2.775960 +- 0.000003 d, transit epoch Tc = 2455027.59293 +- 0.00031 (BJD), and transit duration 0.1276 +- 0.0013 d. The host star has a mass of 1.22 +- 0.04 Msun, radius of 1.24 +- 0.05 Rsun, effective temperature 6158 +-80 K, and metallicity [Fe/H] = +0.17 +- 0.08. The planetary companion has a mass of 4.193 +- 0.094 MJ, and radius of 1.289 +- 0.066 RJ yielding a mean density of 2.42 +- 0.35 g/cm3. Comparing these observed characteristics with recent theoretical models, we find that HAT-P-16b is consistent with a 1 Gyr H/He-dominated gas giant planet. HAT-P-16b resides in a sparsely populated region of the mass{radius diagram and has a non-zero eccentricity of e = 0.036 with a significance of 10 sigma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا