ﻻ يوجد ملخص باللغة العربية
A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1-D models.
Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain value, which is called the runaway greenhouse threshol
Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photoc
Ultracool dwarfs (UCD; $T_{rm eff}<sim3000~$K) cool to settle on the main sequence after $sim$1 Gyr. For brown dwarfs, this cooling never stops. Their habitable zone (HZ) thus sweeps inward at least during the first Gyr of their lives. Assuming they
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, an
The most widely-studied mechanism of mass loss from extrasolar planets is photoevaporation via XUV ionization, primarily in the context of highly irradiated planets. However, the EUV dissociation of hydrogen molecules can also theoretically drive atm