ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of the onset of the runaway greenhouse effect on the latitudinal surface water distribution of Earth-like planets

107   0   0.0 ( 0 )
 نشر من قبل Takanori Kodama
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here, we investigate the effect of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We considered a 1-bar atmosphere whose composition is similar to the current Earths atmosphere with a zonally uniform distribution of surface water. As previous studies have already shown, we also recognized two climate regimes: the land planet regime, which has dry low latitude and wet high latitude region, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earths orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.

قيم البحث

اقرأ أيضاً

A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agr eement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1-D models.
129 - G. Vladilo , L. Silva , G. Murante 2015
We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface Energy Balance Model complemented by: radiative-c onvective atmospheric column calculations, a set of physically-based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (epsilon >= 45^o). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ~5K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5 <= Omega/Omega_o <= 2, 0.75 <= S/S_o <= 1.25, 0.3 <= p/(1 bar) <= 10, and 0.5 <= R/R_o <= 2, respectively. The ESTM has an extremely low computational cost and can be used when the planetary parameters are scarcely known (as for most exoplanets) and/or whenever many runs for different parameter configurations are needed. Model simulations of a test-case exoplanet (Kepler-62e) indicate that an uncertainty in surface pressure within the range expected for terrestrial planets may impact the mean temperature by ~60 K. Within the limits of validity of the ESTM, the impact of surface pressure is larger than that predicted by uncertainties in rotation rate, axis obliquity, and ocean fractions. We discuss the possibility of performing a statistical ranking of planetary habitability taking advantage of the flexibility of the ESTM.
The runaway greenhouse represents the ultimate climate catastrophe for rocky, Earth-like worlds: when the incoming stellar flux cannot be balanced by radiation to space, the oceans evaporate and exacerbate heating, turning the planet into a hot waste land with a steam atmosphere overlying a possibly molten magma surface. The equilibrium state beyond the runaway greenhouse instellation limit depends on the radiative properties of the atmosphere and its temperature structure. Here, we use 1-D radiative-convective models of steam atmospheres to explore the transition from the tropospheric radiation limit to the post-runaway climate state. To facilitate eventual simulations with 3-D global circulation models, a computationally efficient band-grey model is developed, which is capable of reproducing the key features of the more comprehensive calculations. We analyze two factors which determine the equilibrated surface temperature of post-runaway planets. The infrared cooling of the planet is strongly enhanced by the penetration of the dry adiabat into the optically thin upper regions of the atmosphere. In addition, thermal emission of both shortwave and near-IR fluxes from the hot lower atmospheric layers, which can radiate through window regions of the spectrum, is quantified. Astronomical surveys of rocky exoplanets in the runaway greenhouse state may discriminate these features using multi-wavelength observations.
Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, cha nge under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N2-O2 dominated, atmospheres orbiting the Sun at 1 Astronomical Unit. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 bar to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2{mu}m - 20{mu}m. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates and the surface temperature decreases, reaching surface temperatures below 273K (approximately at ~34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres.
The search for Earth-like planets around Sun-like stars and the evaluation of their occurrence rate is a major topic of research for the exoplanetary community. Two key characteristics in defining a planet as Earth-like are having a radius between 1 and 1.75 times the Earths radius and orbiting inside the host stars habitable zone; the measurement of the planets radius and related error is however possible only via transit observations and is highly dependent on the precision of the host stars radius. A major improvement in the determination of stellar radius is represented by the unprecedented precision on parallax measurements provided by the Gaia astrometry satellite. We present a new estimate of the frequency of Earth-sized planets orbiting inside the host starss habitable zones, obtained using Gaia measurements of parallax for solar-type stars hosting validated planets in the Kepler field as input for reassessing the values of planetary radius and incident stellar flux. This updated occurrence rate can usefully inform future observational efforts searching for Earth-like system in the Sun backyard using a variety of techniques such as the spectrograph ESPRESSO, the space observatory PLATO and the proposed astrometric satellite Theia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا