ترغب بنشر مسار تعليمي؟ اضغط هنا

Water loss from Earth-sized planets in the habitable zones of ultracool dwarfs: Implications for the planets of TRAPPIST-1

162   0   0.0 ( 0 )
 نشر من قبل Emeline Bolmont
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultracool dwarfs (UCD; $T_{rm eff}<sim3000~$K) cool to settle on the main sequence after $sim$1 Gyr. For brown dwarfs, this cooling never stops. Their habitable zone (HZ) thus sweeps inward at least during the first Gyr of their lives. Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to entering the HZ. It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry worlds. Here we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations. We address the whole range of UCDs but also focus on the planets recently found around the $0.08~M_odot$ dwarf TRAPPIST-1. Despite assumptions maximizing the FUV-photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amounts of water in the HZ of UCDs, with a sweet spot in the $0.04$-$0.06~M_odot$ range. We also studied the TRAPPIST-1 system using observed constraints on the XUV-flux. We find that TRAPPIST-1b and c may have lost as much as 15 Earth Oceans and planet d -- which might be inside the HZ -- may have lost less than 1 Earth Ocean. Depending on their initial water contents, they could have enough water to remain habitable. TRAPPIST-1 planets are key targets for atmospheric characterization and could provide strong constraints on the water erosion around UCDs.



قيم البحث

اقرأ أيضاً

Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres (refs 3-6). Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones (refs 6-8). An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures (ref 9). However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere (refs 10,11). Here, we report observations for the four planets within or near the systems habitable zone, the circumstellar region where liquid water could exist on a planetary surface (refs 12-14). These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8, 6 and 4 sigma, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation (refs 15,16), these observations further support their terrestrial and potentially habitable nature.
163 - Ji Jianghui 2009
We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune -mass companions with one massive terrestrial planet residing in 0.07 AU $leq a leq$ 1.20 AU, to examine the asteroid structure in this system. We underline that there are stable zones of at least $10^5$ yr for low-mass terrestrial planets locating between 0.3 and 0.5 AU, and 0.8 and 1.2 AU with final eccentricities of $e < 0.20$. Moreover, we also find that the accumulation or depletion of the asteroid belt are also shaped by orbital resonances of the outer planets, for example, the asteroidal gaps at 2:1 and 3:2 mean motion resonances (MMRs) with Planet C, and 5:2 and 1:2 MMRs with Planet D. In a dynamical sense, the proper candidate regions for the existence of the potential terrestrial planets or HZs are 0.35 AU $< a < $ 0.50 AU, and 0.80 AU $< a < $ 1.00 AU for relatively low eccentricities, which makes sense to have the possible asteroidal structure in this system.
The effects of multi-layered clouds in the atmospheres of Earth-like planets orbiting different types of stars are studied. The radiative effects of cloud particles are directly correlated with their wavelength-dependent optical properties. Therefore the incident stellar spectra may play an important role for the climatic effect of clouds. We discuss the influence of clouds with mean properties measured in the Earths atmosphere on the surface temperatures and Bond albedos of Earth-like planets orbiting different types of main sequence dwarf stars.
We present an XMM-Newton X-ray observation of TRAPPIST-1, which is an ultracool dwarf star recently discovered to host three transiting and temperate Earth-sized planets. We find the star is a relatively strong and variable coronal X-ray source with an X-ray luminosity similar to that of the quiet Sun, despite its much lower bolometric luminosity. We find L_x/L_bol=2-4x10^-4, with the total XUV emission in the range L_xuv/L_bol=6-9x10^-4, and XUV irradiation of the planets that is many times stronger than experienced by the present-day Earth. Using a simple energy-limited model we show that the relatively close-in Earth-sized planets, which span the classical habitable zone of the star, are subject to sufficient X-ray and EUV irradiation to significantly alter their primary and any secondary atmospheres. Understanding whether this high-energy irradiation makes the planets more or less habitable is a complex question, but our measured fluxes will be an important input to the necessary models of atmospheric evolution.
The Kepler-1647 is a binary system with two Sun-type stars (approximately 1.22 and 0.97 Solar mass). It has the most massive circumbinary planet (1.52 Jupiter mass) with the longest orbital period (1,107.6 days) detected by the Kepler probe and is lo cated within the habitable zone (HZ) of the system. In this work, we investigated the ability to form and house an Earth-sized planet within its HZ. First, we computed the limits of its HZ and performed numerical stability tests within that region. We found that HZ has three sub-regions that show stability, one internal, one co-orbital, and external to the host planet Kepler-1647b. Within the limits of these three regions, we performed numerical simulations of planetary formation. In the regions inner and outer to the planet, we used two different density profiles to explore different conditions of formation. In the co-orbital region, we used eight different values of total disc mass. We showed that many resonances are located within regions causing much of the disc material to be ejected before a planet is formed. Thus, the system might have two asteroid belts with Kirkwood gaps, similar to the Solar Systems main belt of asteroids. The co-orbital region proved to be extremely sensitive, not allowing the planet formation, but showing that this binary system has the capacity to have Trojan bodies. Finally, we looked for regions of stability for an Earth-sized moon. We found that there is stability for a moon with this mass up to 0.4 Hills radius from the host planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا