ﻻ يوجد ملخص باللغة العربية
We introduce and study several new topological operads that should be regarded as nonsymmetric analogues of the operads of little 2-disks, framed little 2-disks, and Deligne-Mumford compactifications of moduli spaces of genus zero curves with marked points. These operads exhibit all the remarkable algebraic and geometric features that their classical analogues possess; in particular, it is possible to define a noncommutative analogue of the notion of cohomological field theory with similar Givental-type symmetries. This relies on rich geometry of the analogues of the Deligne-Mumford spaces, coming from the fact that they admit several equivalent interpretations: as the toric varieties of Lodays realisations of the associahedra, as the brick manifolds recently defined by Escobar, and as the De Concini-Procesi wonderful models for certain subspace arrangements.
We develop the deformation theory of cohomological field theories (CohFTs), which is done as a special case of a general deformation theory of morphisms of modular operads. This leads us to introduce two new natural extensions of the notion of a CohF
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat
A method of constructing Cohomological Field Theories (CohFTs) with unit using minimal classes on the moduli spaces of curves is developed. As a simple consequence, CohFTs with unit are found which take values outside of the tautological cohomology o
In his 2011 paper, Teleman proved that a cohomological field theory on the moduli space $overline{mathcal{M}}_{g,n}$ of stable complex curves is uniquely determined by its restriction to the smooth part $mathcal{M}_{g,n}$, provided that the underlyin
We revisit the question of microcausality violations in quantum field theory on noncommutative spacetime, taking $O(x)=:phistarphi:(x)$ as a sample observable. Using methods of the theory of distributions, we precisely describe the support properties