ترغب بنشر مسار تعليمي؟ اضغط هنا

Failure of microcausality in noncommutative field theories

147   0   0.0 ( 0 )
 نشر من قبل Michael A. Soloviev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the question of microcausality violations in quantum field theory on noncommutative spacetime, taking $O(x)=:phistarphi:(x)$ as a sample observable. Using methods of the theory of distributions, we precisely describe the support properties of the commutator [O(x),O(y)] and prove that, in the case of space-space noncommutativity, it does not vanish at spacelike separation in the noncommuting directions. However, the matrix elements of this commutator exhibit a rapid falloff along an arbitrary spacelike direction irrespective of the type of noncommutativity. We also consider the star commutator for this observable and show that it fails to vanish even at spacelike separation in the commuting directions and completely violates causality. We conclude with a brief discussion about the modified Wightman functions which are vacuum expectation values of the star products of fields at different spacetime points.



قيم البحث

اقرأ أيضاً

Assigning an intrinsic constant dipole moment to any field, we present a new kind of associative star product, the dipole star product, which was first introduced in [hep-th/0008030]. We develop the mathematics necessary to study the corresponding no ncommutative dipole field theories. These theories are sensible non-local field theories with no IR/UV mixing. In addition we discuss that the Lorentz symmetry in these theories is ``softly broken and in some particular cases the CP (and even CPT) violation in these theories may become observable. We show that a non-trivial dipole extension of N=4, D=4 gauge theories can only be obtained if we break the SU(4) R (and hence super)-symmetry. Such noncommutative dipole extensions, which in the maximal supersymmetric cases are N=2 gauge theories with matter, can be embedded in string theory as the theories on D3-branes probing a smooth Taub-NUT space with three form fluxes turned on or alternatively by probing a space with R-symmetry twists. We show the equivalences between the two approaches and also discuss the M-theory realization.
The study of the heat-trace expansion in noncommutative field theory has shown the existence of Moyal nonlocal Seeley-DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We s how that these models can be studied in a worldline approach implemented in phase space and arrive to a master formula for the $n$-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the noncommutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other nonlocal operators.
We consider a noncommutative field theory with space-time $star$-commutators based on an angular noncommutativity, namely a solvable Lie algebra: the Euclidean in two dimension. The $star$-product can be derived from a twist operator and it is shown to be invariant under twisted Poincare transformations. In momentum space the noncommutativity manifests itself as a noncommutative $star$-deformed sum for the momenta, which allows for an equivalent definition of the $star$-product in terms of twisted convolution of plane waves. As an application, we analyze the $lambda phi^4$ field theory at one-loop and discuss its UV/IR behaviour. We also analyze the kinematics of particle decay for two different situations: the first one corresponds to a splitting of space-time where only space is deformed, whereas the second one entails a non-trivial $star$-multiplication for the time variable, while one of the three spatial coordinates stays commutative.
The fuzzy disc is a discretization of the algebra of functions on the two dimensional disc using finite matrices which preserves the action of the rotation group. We define a $varphi^4$ scalar field theory on it and analyze numerically for three diff erent limits for the rank of the matrix going to infinity. The numerical simulations reveal three different phases: uniform and disordered phases already the present in the commutative scalar field theory and a nonuniform ordered phase as a noncommutative effects. We have computed the transition curves between phases and their scaling. This is in agreement with studies on the fuzzy sphere, although the speed of convergence for the disc seems to be better. We have performed also three the limits for the theory in the cases of the theory going to the commutative plane or commutative disc. In this case the theory behaves differently, showing the intimate relationship between the nonuniform phase and noncommutative geometry.
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group . A significant new contribution here is the construction of the Poincare generators using quantum fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا